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Abstract  This paper proposes a framework for the constitutive model based on the semi-
micromechanical aspects of plasticity, including damage progress for simulating behavior of concrete
under multiaxial loading. This model is aimed to be used in plastic and fracture analysis of both
regular and reinforced concrete structures, for the framework of sample plane crack approach. This
model uses multilaminated framework with sub-loading surface to provide isotropic and kinematics
hardening/softening in the ascending/descending branches of loading. In multilaminated framework a
relation between stress/strain and yield function on planes of various orientation is defined and
stress/strain path history for each plane is kept for a sequence of future analysis. Four basic stress
states including compression-shear with increase/decrease in the compression/shear ratio,tension-
shear and pure compression are defined and the constitutive law for each plane is derived from the
most influenced combination of stress states. With using sub-loading aspect of the surface, the
kinematics and isotropic hardening are applied to the model to make it capable of simulating the
behavior under any stress path, such as cyclic loading in the ascending/descending branch of loading.
Based on the experimental results of the literature, the model parameters are calibrated. The model
results under monotonic loading and also different states of cyclic loadings such as uniaxial
compression, tension, alternate compression tension, shear and triaxial compression are compared
with experimental results that shows the capability of the model.

Keywords Concrete, Multilaminate, Microplane, Elastoplastic, FEM, Substructure, Fracture
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1. INTRODUCTION mechanism of concrete, under different states of
multiaxial stresses, load paths, also the prediction
A simulation of concrete behavior and fractured of aspects such as unloading/reloading and cyclic
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loading is very significant. Several models are used
in the recent years based on the stress/strain
invariants, the classical approach to constitutive
modeling of concrete based on direct use of
stress/strain tensor, and their invariants were used
in the first decade of computer programming, and
there hasn’t been any more accurate modeling of
concrete since. However the models based on the
concrete sub-structures, such as microplane and
multilaminated could improve concrete modeling
specially where the concrete is non-isotropic or
there is fabric property or even a crack in the
concrete. The proposed model is able to predict
the behavior of concrete under any arbitrary
stress/strain path and final failure mechanism.

1.1. Multilaminate Concept The concept
of multilaminate is based on the numerical
approximation of integration, and the distribution
of a certain physical property such as strain
distributed over the surface of a media. This
approach can numerically be achieved by summing
up the multiplication of the property values by the
specified weighted coefficients for predefined
points and considering as an approximate
representative value over the media. Based on this
framework the behavior of a three dimensional
media is averaged and approximated into the
appropriate summation of slipping behavior
of sampling planes passing through points.
Consequently, this slip feature could be
representative of the real variations of strain which
are taken place through the boundaries of artificial
structural units. Therefore, the accuracy of the
solutions is highly related to the employed
constitutive relation for the frictional slip/
opening/closing gaps of a sampling point.

1.2. History of Multilaminate Framework
The concept of multilaminate approach was first
proposed by Taylor in 1938 [1]. Later a theory of
plasticity based on the concept of slip theory was
developed by Batdorf, et al [2] and Budiansky
for metals. This theory was based on the
assumption that, slip in any particular orientation
in the material, will develop to a plastic
shear strain which depends only on the
history of the corresponding component of shear
stresses/strains.

Multilaminates model for rocks was developed
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by Zienkiewicz, et al [3], Also Pande, et al [4]
developed elasto/viscoplastic model for clays.

Bazant, et al [5] developed a model called
microplane model for fracture analysis of concrete.
This model was proposed to describe inelastic
decline of stress at increasing strain which results
to from progressive development of fracture and
was based on the strain control parameters and
summation of stress increments on each plane with
using equivalent virtual energy to obtain macro-
stress.

Sadrnejad, et al [6,7] developed a multilaminate
model for granular materials and in particular
sands.

2. MODEL EXPLANATION

The proposed model is originally based on the multi-
laminated framework for elastoplastic behavior of
intact concrete, sub-structural boundaries, considering
hardening/softening rule and elastic behavior of
sub-structural units. It consists of the following
basis:

Constitutive equations

Yield function and potential surface
Hardening/Softening rule

Flow rule and consistency condition

2.1. General Constitutive Equation From
classical theory strain can be decomposed to elastic
and plastic components as follow:

dszdse+daP
de® =CC%do

deP =CPds

C®is the elastic part of compliance matrix and C” is
the plastic compliance matrix. C® is constant for
different planes and is computed from elasticity
theory.

The term ds” can be calculated from weighted

summation of d:a%j of active planes, if a sphere with
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n planes is considered as shown in Figure 1:

n
de” =8y WL 1T.deP
i=1

With considering dsip :afdci

n —
de’ =8z 3 wiL JT.CP L Jdo
o 1- € 1 (e}

TP
cP=[L 1 CoIL ]

n
cP=gny w.cP.
i=1

Where L and L are transformation matrices for
strain and stresses, respectively n is number of

planes. Ef is 3 x 3 compliance matrix for plane i

in the local coordinates and C%’ is 6 X 6

compliance matrix in the global coordinate.
cP is composed from weighted summation of
c%’ corresponding to any of the active planes, It

should be noted that Cf’ for elastic planes (Non-

active planes) is equal Zero, Analysis shows that
using 13 planes satisfy accuracy for most
engineering problems. These planes are shown in
the Figure 2

A modified Sub-loading yield surface is used in
the models [8,9], for elasto-plastic behavior of
planes as shown in Figure 3 sub-loading
surface,which always passes through the current
stress point and keeps a similar shape to the yield
surface, therefore renamed as the normal-yield
surface, and an orientation of similarity to the
normal-yield surface. The subloading surface does
not only translate but also expands/contracts with
the plastic deformation.

The similarity-center S moves with a plastic
deformation. Although it was fixed in the origin of
stress space in the initial subloading surface model,
using this concept the model has strong capability
to predict isotropic and kinematics hardening
behavior for loading, unloading and reloading.
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Figure 1. Multilaminate framework aspect and planes
orientations.

4.1./ Planes 11,12,13 <~  Planes 7,8.9,10

Figure 2. Multilaminate planes orientations.

2.2. Stress State on Planes The effects of any
stress/strain path over a simple typical dx,dy,dz
cube element on an arbitrary sampling plane can
lead to four stress/strain paths. All stress states in
the material can be divided to four categories on a
typical plane which are as follows:

J Compression-Shear with Increasing in the
Compression

. Compression-Shear with Decreasing in the
Compression

J Tension-Shear

Pure Compression
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Subloading surface

Normal-yield surface

Figure 3. Normal-yield and Subloading surfaces.

In this framework, any form of yield criterion
including crack effects may be considered for
different sampling plane to any local behavior
aspect, and with the summation of all planes
behavior we approach the media behavior.

In most cases of element stress/strain paths the
compression or tension, accompanied shear is the
governing case, but for generality of the model,
pure compression is considered in the model. In
this way any complex form of stress/strain path is
analysed into the stated four, on the planes cases
and lead to proper planar behavior.

The yielding criteria proposed for the identified
cases are introduced as follow:

2.2.1. Compression-shear When a plane is
subjected to compression and shear in the loading
path, two load pattern may exist:

@,

«  Increasing or constant shear/compression
rate with increase in the compression stress,
sample of this load path is Triaxial
compression test with the constant lateral
pressure and increasing axial compression
stress. The uniaxial compression is a special
case that shear/compression ratio is constant.

«  Increasing shear/compression rate with

decreasing compression stress. Sample with

this load pattern is a triaxial test, when the
lateral compression is decreased but axial
compression is remained.
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The behavior of concrete under the above load
paths is not completely similar thus two separate
functions are used in the equations.

2.2.1.1. Increasing Shear/Compression Rate
With Increase in the Compression Stress In
this models’ hyperbolic yield function for
compressive and shear stresses is considered as
follows:

f(6) =~ Cpy(o,, +C402) < F(H)

_ 2 2
T= Gy+GZ

C_=0
n X

€3 = Material constant
F(H) = Hardening/Softening Function

F(H) = v,y (1+C (H; /H_)+v,,H, <H_

F(H)=v,(1+C(H; /H_)+
Vo Coy(H, /H —1)+v, H >H

2
H. =g .=+l +¢ P +a§i Plastic strain

H,,= vi= Model variable
C,,C, Material constants
v, Material Strength variable

Ciy Hystersis softening parameter

Chi=

A.(H. -Hg.) A.(H.-Hg,.)
11 01/ _ _ 1V 1 01
v3e (SIGN.V3 CHOi)e

A,(H;-H
—Cy(1=SIGN)(C V3 —Cyp . )e

0i)
SIGN = 1 for loading/reloading; SIGN = -1 for
unloading; at the end of previous cycle Cyg = Cy;
value, it may be Cyg; = v3.C4 for first loading.

The term Hg; is value of H; at the end of
previous cycle in the first loading (virgin material)
and it is zero. If the previous load path is pure
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compression Hy. =Cyye o .

The term A; is cyclic parameter. At the first
loading, it is Cy,. Then it becomes:

A;=Cp +C3Hy,;

at the end of previous cycle.

All active planes in the state of loading such
as uniaxial compression, Biaxial Compression,
Triaxial Compression and also some planes in
the Biaxial Compression-Tension test can be
categorized in the compression-Shear state. Also it
should be noted that some planes, for example
plane normal to load in uniaxial compression test is
in pure compression, but this plane remains elastic
in the test.

2.2.1.2. Increasing Shear/Compression Rate
With Decrease in Compression Stress In the
model yield function is similar to increasing
compression stress except the C; is revised to Cs as
follows:

£(6)=1-Cyy(o, +Cs02) <F(H)

2.2.2.Tension-shear In this model mohr-
Coloumb linear yield function between tension
stress and shear stress is used:

£(6)=1-Cyo, <Fp(H)

_ a2, A2
T= Gy+GZ

G =0
n X

CeH;
Fr(H)= (v, +vy)e

Hardening is considered in the Cy as frictional
hardening/softening including degrading in the
cyclic hystersis behavior also Fr(H;)represents
cohesional hardening/softening and when the crack
opens the cohesional strength of material is
considered as zero but the frictional strength is
remained.

2.2.3. Pure compression state For pure
compression exponential function is used as
follows:

o, = EcVSEXp (—C98V)— EC Vs
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A

f(o)= o, + VSECEXp(—C98V) - EcVS

e, =(8n+8 +8Z)/3

y

€y max = Maxe at end of loading

C9 = Material constants

vs= Material variable

Figure 4 Shows this function typically

2.3. Stresses on Planes  For plane i three
normal vectors is defined and stress is computed as
follow:

o, = stress on plane i

n. = normal cosine of plane i

—

m, = arbitrary vector on plane i

Ti = vector on plane i perpendicular m,

Vector summary are as follow

2.4. Kinematic Hardening Kinematic

hardening is defined as below:

6. =0.- —O-
1 1 1

A
aj = Kinematics hardening vector

A

Lo
ol
b, = C H; 7

Cs, C7, material constants

3. COMPUTATION PROCEDURE

The sequences of computation are as follows:

o First the stress components on each plane
is calculated, then the kinematic hardening vector
is calculated based on the value of the plastic strain
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Figure 4. Typical yield function (a) Compression/tension
shear (b) Pure compression.

Hi calculated from previous step. Based on the
stress state of plane, the yield function is
calculated. For guaranty to move in or at the
surface of yield function a penalty function of U is
defined as:
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Ui = -y, lnRi

u;= Vg for shear compression state
u; = V; for shear tension state

U is the function that relates R increment to plastic
strain increment and it guarantees that R; is to be
less than unit, It should be noted that in the
numerical calculation R may be greater than one
for 1-2 steps but the penalty function of U adjust it
to unit even though the load step is large.

5 _ p

Ri—UinSi I

u=o00 for R=0
>0 R<1

u=0 R=1

u<o0 R>1

Similarity center S is the center of subloading in
the space of stress

i i i
) p. S . 110,
S=C,,||de? || =L +a+—=<FS
10 R. F
i

C,o= material Constant

o; —Gi—Si

def = XEN A Non Associate flow Rule

N=TO0 ) TO | N

c do

Ma =220y

Ma =22 Wy, 0)-22
Nxa =N [N |
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C,5= Material Constant

daP :@ﬁ

NA
Mp
MP = tr{ﬁ[§+ [Eh +H}6ﬂ
F R
h :E, a _¢
A A

Then the CP can be calculated with weighted
summation of all planes.

13
cP=8zy wicip
i=1

4. CALIBRATION

The parameters of models are divided into two
groups, fixed parameters, that are the same for
all normal concrete and need not to be calibrated
for different concrete, They are parameters C,,
C,, Cis and variable parameters that should be
adjusted for each type of concrete such as Vi,
Vo, ... V7.

The model has been calibrated for experimental
data in three stages, in the first stage the material
strength under different classical load paths,
such as biaxial stresses, uniaxial compression
and tension, triaxial compression and shear-
compression interaction is evaluated, and the
parameters of most materials are defined, in the
second stage the material response and strain are
evaluated for many load paths such as uniaxial
compression, uniaxial tension,biaxial compression,
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biaxial compression-tension,triaxial compression
with an increase in axial compression or decrease
in lateral pressure, and also concrete behavior
under pure compression. In the last stage the model
is evaluated for unloading, reloading and cyclic
loading.

For calibration of variable parameters(V; to V;)
that have more effects on the model behavior,
specified concrete stress-strain data for uniaxial
compression, uniaxial tension and also a data
for biaxial or triaxial compression strength are
necessary for calibration of shear-compression
and shear-tension states, and test data for pure
compression should be used for calibration of
model if pure compression is important. The
variable parameters ranges are are shown in Table
3 (SI units).

The effect of each variable parameter on the
model behavior are investigated and are as follow:

Vi Shifts peak stress, increase strain
of peak stress point

V, Increase concrete strength,
specially shear and tensile strength

V3 Changes  stiffness and also
compression strength

V, Controls on the pure shear strength
and tensile strength

Vs Increase material strength in pure
compression

Vs Controls material stiffness in the
compression state

V; Controls material stiffness in the

tension state

Fixed parameters (C; to C;s) has not changed in
different concrete and the values set can be used
for normal concrete with compressive strength
between 20 MPa to 60 MPa but for high strength
concrete or special concrete such as fiber
reinforced concrete, these values should be
adjusted, It should be noted that when more
accuracy is necessary some of the fixed parameter
is recommended to be adjusted, for example C; is
very important for high confinement or C,; is very
important for cyclic stress behavior. The typical
values of fixed parameters for normal concrete are
shown in Table 3.

The effect of each fixed parameter on the model
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TABLE 1. Planes normal Vectors and Weights.

Plane n m 1 Weight
LI U o \F \F \F
1 BB \E,— 2,0 . ket 27/840
1 1 1 1 1 1 1 1
2 NG \/; 5,0 \E \E Z\E 27/840
N NG ool
3 \/37\/576 \/?, 2,0 + 6, 6,+2 6 27/840
4 LU Ly \F,— Lo \F \F 2\F 27/340
3 3°V3 2 2 6 6 6
5 T N \P,- Lo 0,0, 1 32/840
2 2 2 2
6 S LR NERRN L 0,0, 1 32/840
2 2 2 2
7 w20 \F 0, - \P 0,1,0 32/840
2 2 2 2
8 N I o,\F 0,1,0 32/840
2 2 2 2
1 1 1 1
9 0~ =, |~ 0,./— , \/7 1,0,0 32/840
27 \2 2 2
10 0,5, [ 0,- L - L 1,0,0 32/840
2 2 2 2
11 1,0,0 0,1,0 0,0,1 40/840
12 0,1,0 1,0,0 0,0,1 40/840
13 0,0,1 0,0,1 1,0,0 40/840
behavior are investigated and are as follow: Cs Affect on the hardening/softening
in the tension state

C.,C, Shift post peak and effect on the Co Increase the plastic limit in pure
residual stress compression

G Controls strength on high pressure Cio Control hystersis behavior and
region specially (increasing residual stress
compression) Cy Affect on the back stress in the

C, Controls stiffness degrading hystersis,

Cs Controls strength on high pressure Cipand C3 Affect on the hystersis behavior
region specially (Decreasing Cis Relates the pure compression
compression) damage to other states of stress

Cs,C5 Affect on the kinematic hardening Cis Affect on the volumetric strain

336 - Vol. 21, No. 4, November 2008
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TABLE 2. Variable Parameters Ranges.

Variable Parameter Minimum Value Maximum Value Recommended Value(f’c = 40MPa)

Vi 0.005 0.05 0.01

V, 0.2E7 0.5E7 0.3E7

V3 0.55 0.7 0.63

V, 0.05E7 0.2E7 0.1E7

Vs -.002 -.005 -.003

Vs 3,000 8,000 5,000

V; 100,000 150,000 120,000

TABLE 3. Constant Parameters.

Constant Parameter

Recommended Value (Normal Concrete)

C -0.01
G -0.001
C; 3.E-9
Cy 1.8
Cs 1.5E-9
Cs 1.6E6
C, 0.4
Cs 5000
Cy 250.
Cio 300
Cu 200
Cp -55.
Cis -5000.
Cis 0.11
Cis 0.20

It should be noted that if only compression-shear
state is important, the strength of concrete can be
adjusted with defining V, and V3 and for adjusting
Stiffness the variable V4 should be adjusted, Thus
for compression shear state that is most important
and practical case only four variable of V,, V,, V3
and Vg are necessary, For tension and tension shear
cases variable V3, V4 and V; should be adjusted

1JE Transactions A: Basics

too. Vs is only significant for pure compression
and high confinement pressure cases.

5. MODEL EVALUATION

As illustrated above the model has been evaluated
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with experimental data from literature for its
calibration and evaluations in monotonic and cyclic
loading

5.1. Monotonic Loading The model is checked
for different state of monotonic loadings with
experimental results in the literature such as
compression-shear, uniaxial compression,uniaxial

tension,Biaxial compression, biaxial compression
tension and triaxial compression.

Figure 5 shows the comparison of shear
compression force interaction of model prediction,
experimented by Bresler, et al [10] and also
Goode, et al [11] that shows the strength of the
model is close to experimental result.

Figure 6 shows the biaxial stress enveloped by

0.50
Bresler[10]
f 'c=28.8MPa o E - al
N xperimental-
E=38610MPa Bressler(1958)
0.40 Vi=0.01 : [
_ & Experimental-
v2=0.28E7 Goode(1967)
v3=0.62 —=— Model
v4=0.08e7
0.30 v6=5000
o v7=120000
ha
-
o
0.20 o
o .
*

0.00 - ; T
0.00 0.20

0.40

0.60 0.80 1.00

ol f°,

Figure 5. Comparison of model for shear-compression experimental data Bresler [10] and Goode [11].

0.20
e N 000
-1.40 -1.20 1/00 -0/80 -0/60 -0/40 -0,20 0.00 0.20 0.40
-0.20
——TASUJl et al .
Tasji et. al.
—&— Model 0-46 22
< -
( /f ‘c¥34.5MPa
o060 | =315 MPa
' E=31000MPa
v1=0.01
-0.80 v2=0.28E7
1 v3=0.64
o v4=0.08e7
\ = v6=5000
| — v7={120000
<
1.40

Figure 6. Comparison of model for biaxial stress experimental data, Tasuji [12].
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Tasuji, et al [12] with model prediction, The model
has good fitting in compression-tension and also
tension-tension region but in the compression-
compression region it is little more than the
experimental result.

Figure 7 shows the result of uniaxial compression
test (Van Mier [13]) as predicted by model that

shows very good fitting of the whole response, also
the volumetric strain results of the model is compared
with experimental results that is quite fitted.

Figure 8 shows the comparison of uniaxial
tension tests performed by Pettersson, et al [14],the
model result is close to experimental data and has
good fitting.

50.00
—B— Experimental
40.00 | =Model
;_“? 30.00
g \
a n Mier [13]
& 20.00 c=38.2MPa
2 +38000MPa
=0.01
=0.30E7
10.00 v3=0.64
va4=0.1e7
ve=5000
v7=120000
0.00 T T |
0.000 0.002 0.004 0.006 0.008 0.010
STRAIN
(a)
56.60 :
—B— Experimental
—Model
46-66
é /
7 —
i
o
= 26-60
n
E/ ?//
10-06
i . 0-00 l/ !
-0.004 -0.003 -0.002 -0.001 0.000 0.001 0.002

VOLUMETRIC STRAIN

(b)

Figure 7. Comparison of model for uniaxial compression experimental data, Van mier [13]
(a) Stress-strain curve (b) Volumetric strain versus stress.
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v 30
g / - FEMPa
7 20 £=40000M}§\
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OO ® ——Ad N T
0.0000 0.0002 0.0004 0.0006 0.0008
STRAIN
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Figure 8. Comparison of model for uniaxial tension experimental data, petersson [14]
(a) 'c=42.5(b) 'c=56.7.

5.2. Cyclic Loading Different states of cyclic

Figures 9 and 10 show the experimental
loadings such as uniaxial compression, uniaxial

data of Sfer [15] for triaxial test under low and

high confinement with model results,They show
that model predicts higher strength (7 %) in low
confinement but it is close to experimental
result.
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compression, uniaxial compression-tension and
proportional ~and  non-proportional triaxial
compression are considered for evaluation of

model.
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Figure 9. Comparison of model for triaxial compression experimental data (Low Confinement)-, Sfer [15]
(a) Stress-strain curve (b) Volumetric strain versus stress.

Figure 11 shows the result of uniaxial
compression cyclic loading of Sinha [16] with
model prediction that shows close fitting between

model result and experiment.
Figure 12 and 13 show the result of uniaxial
cyclic tension and uniaxial tension alternate
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compression experimental test data of Reihardt
[17] with model simulation that show a good result
and fitness.

Figure 14 shows the result of cyclic shear test of
Eligenhause [18] with model prediction that shows
good prediction.
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Figure 10. Comparison of model for triaxial compression experimental data (High Confinement)-, Sfer [15]
(a) Stress-strain curve (b) Volumetric strain versus stress.

Figure 15 shows the result of hydrostatic
compression of Bazant [19] with model prediction
that shows very good fitting.

Figures 16 shows the comparison between
Hurlbeut [20] test data for tri-axial compression
with constant lateral pressure of 1Ksi (6.91 MPa)
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with model prediction and in Figure 17 the result
of Scavuzzo, et al [21] triaxial compression test
when the axial compression decreases with an
increase in the lateral pressure, as cyclic loading is
shown, that illustrate good fitting of model and
experimental results.
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Figure 11. Comparison of model for cyclic uniaxial
compression experimental data-Sinha, et al [16].
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Figure 12. Comparison of model for cyclic tension
experimental data-reinhardt [17].

6. CONCLUSIONS
From this research on the basis of substructure a

model for simulation of concrete behavior under any
stress/strain path in the multilaminate framework,
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Figure 13. Comparison of model for cyclic compression-
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Figure 14. Comparison of model for cyclic shear stress
experimental data-eligenhause [18].

with using sub-loading surface is derived. The
comparison of model with experimental data such
as monotonic uniaxial compression/tension, biaxial
loading, triaxial compression and hydrostatic
compression, show the good simulation of model. It
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Figure 15. Comparison of model for cyclic Hydrostatic compression experimental data-Bazant, et al [19].
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Figure 16. Comparison of model for cyclic tri-axial compression experimental data
(Lateral pressure = 1 Ksi = 6.91 MPa) hurlbut, et al [20].

also shows the capability of the model to predict the uniaxial compression/tension hydrostatic,
behavior of concrete under any stress path such as loading/reloading and cyclic triaxial compression.
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