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Abstract   This paper proposes a framework for the constitutive model based on the semi-
micromechanical aspects of plasticity, including damage progress for simulating behavior of concrete 
under multiaxial loading. This model is aimed to be used in plastic and fracture analysis of both 
regular and reinforced concrete structures, for the framework of sample plane crack approach. This 
model uses multilaminated framework with sub-loading surface to provide isotropic and kinematics 
hardening/softening in the ascending/descending branches of loading. In multilaminated framework a 
relation between stress/strain and yield function on planes of various orientation is defined and 
stress/strain path history for each plane is kept for a sequence of future analysis. Four basic stress 
states including compression-shear with increase/decrease in the compression/shear ratio,tension-
shear and pure compression are defined and the constitutive law for each plane is derived from the 
most influenced combination of stress states. With using sub-loading aspect of the surface, the 
kinematics and isotropic hardening are applied to the model to make it capable of simulating the 
behavior under any stress path, such as cyclic loading in the ascending/descending branch of loading. 
Based on the experimental results of the literature, the model parameters are calibrated. The model 
results under monotonic loading and also different states of cyclic loadings such as uniaxial 
compression, tension, alternate compression tension, shear and triaxial compression are compared 
with experimental results that shows the capability of the model. 

 
Keywords   Concrete, Multilaminate, Microplane, Elastoplastic, FEM, Substructure, Fracture 

 
 خميري شامل پيشرفت ه ريزه شب الگوي ساختاري براساس مفهومي براياين مقاله به ارائه چهار چوبچكيده       

اين الگو به هدف استفاده . پردازد ي ميآسيب ديدگي براي شبيه سازي رفتار بتـن تحت بـارگذاري چنـد محـور
در تحليل هاي خميري شكست بتن و سازه هاي بتني مسلح در چهارچوب تقريب ترك روي صفحـات 

نرم /نمـونـه است و براساس چهارچوب چند صفحه اي با استفاده از سطح زير بارگذاري و سخت شدگي
 در چهارچوب چند. باشد ني بارگذاري ميسـرپائي/شدگي همســان و حركتي در شاخه هـاي سـربالائي

كرنش و تابع سيلان روي صفحات با جهات مختلف تعريف شده و مسيرهاي /ارتباط بين تنشصفحه اي 
 تنش یچهار حالت اساس. شود كرنش براي هر صفحه براي مراحل بعدي تحليل نگه داشته مي/تاريخچه تنش

 برش و فشار خالص تعريف شده و قانون -كشش  رش،ب/كاهش در نسبت فشار/شامل فشار برش با افزايش
با استفاده از مفهوم . شود ساختاري براي هر صفحه براي بيشترين تاثير تركيب حالات تنش بدست آورده مي

سطح زير بارگذاري سخت شدگي همسان و حركتي در الگو اعمال گرديده و الگو قادر به شبيه سازي رفتار 
براساس  .باشد سرپائيني بارگذاري مي/ارهاي چرخه اي در شاخه هاي سربالائيتحت هر مسير تنش از جمله ب

 تحت بـارگذاري تك گـامه و همچنين حـالات مختلف الگو نتايـج نتايج آزمايشگاهي الگو فراسنجي گرديد و
كشش متناوب، بـرش و فشـار سه محـوري بـا نتايـج -، كشش، فشاربار چرخه اي مانند فشار تك محوري

 .آزمـايشگاهي مقـايسه گـرديـد كـه نشان دهنده قابليت الگو است
 
 

1. INTRODUCTION 
 
A simulation of concrete behavior and fractured 

mechanism of concrete, under different states of 
multiaxial stresses, load paths, also the prediction 
of aspects such as unloading/reloading and cyclic 
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loading is very significant. Several models are used 
in the recent years based on the stress/strain 
invariants, the classical approach to constitutive 
modeling of concrete based on direct use of 
stress/strain tensor,  and their invariants were used 
in the first decade of computer programming, and 
there hasn’t been any more accurate modeling of 
concrete since. However the models based on the 
concrete sub-structures, such as microplane and 
multilaminated could improve concrete modeling 
specially where the concrete is non-isotropic or 
there is fabric property or even a crack in the 
concrete. The proposed model is able to predict 
the behavior of concrete under any arbitrary 
stress/strain path and final failure mechanism. 
 
1.1. Multilaminate Concept   The concept 
of multilaminate is based on the numerical 
approximation of integration, and the distribution 
of a certain physical property such as strain 
distributed over the surface of a media. This 
approach can numerically be achieved by summing 
up the multiplication of the property values by the 
specified weighted coefficients for predefined 
points and considering as an approximate 
representative value over the media. Based on this 
framework the behavior of a three dimensional 
media is averaged and approximated into the 
appropriate summation of slipping behavior 
of sampling planes passing through points. 
Consequently, this slip feature could be 
representative of the real variations of strain which 
are taken place through the boundaries of artificial 
structural units. Therefore, the accuracy of the 
solutions is highly related to the employed 
constitutive relation for the frictional slip/ 
opening/closing gaps of a sampling point. 
 
1.2. History of Multilaminate Framework   
The concept of multilaminate approach was first 
proposed by Taylor in 1938 [1]. Later a theory of 
plasticity based on the concept of slip theory was 
developed by Batdorf, et al [2] and Budiansky 
for metals. This theory was based on the 
assumption that, slip in any particular orientation 
in the material, will develop to a plastic 
shear strain which depends only on the 
history of the corresponding component of shear 
stresses/strains. 
     Multilaminates model for rocks was developed 

by Zienkiewicz, et al [3], Also Pande, et al [4] 
developed elasto/viscoplastic model for clays. 
     Bazant, et al [5] developed a model called 
microplane model for fracture analysis of concrete. 
This model was proposed to describe inelastic 
decline of stress at increasing strain which results 
to from progressive development of fracture and 
was based on the strain control parameters and 
summation of stress increments on each plane with 
using equivalent virtual energy to obtain macro-
stress. 
     Sadrnejad, et al [6,7] developed a multilaminate 
model for granular materials and in particular 
sands. 
 
 
 

2. MODEL EXPLANATION 
 
The proposed model is originally based on the multi-
laminated framework for elastoplastic behavior of 
intact concrete, sub-structural boundaries, considering 
hardening/softening rule and elastic behavior of 
sub-structural units. It consists of the following 
basis: 
 
• Constitutive equations 
• Yield function and potential surface 
• Hardening/Softening rule 
• Flow rule and consistency condition 
 
2.1. General Constitutive Equation   From 
classical theory strain can be decomposed to elastic 
and plastic components as follow: 
 

Pεdeεdεd +=  
 

σdeCeεd =  
 

σdpCPεd =  
 
Ce is the elastic part of compliance matrix and CP is 
the plastic compliance matrix. Ce is constant for 
different planes and is computed from elasticity 
theory. 
     The term dεP can be calculated from weighted 
summation of p

iεd  of active planes, if a sphere with 
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n planes is considered as shown in Figure 1: 
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Where εL  and σL  are transformation matrices for 
strain and stresses, respectively n is number of 
planes. p

iC  is 3 x 3 compliance matrix for plane i 

in the local coordinates and p
iC  is 6 x 6 

compliance matrix in the global coordinate. 
     pC  is composed from weighted summation of 

p
iC  corresponding to any of the active planes, It 

should be noted that p
iC  for elastic planes (Non-

active planes) is equal Zero, Analysis shows that 
using 13 planes satisfy accuracy for most 
engineering problems. These planes are shown in 
the Figure 2 
     A modified Sub-loading yield surface is used in 
the models [8,9], for elasto-plastic behavior of 
planes as shown in Figure 3 sub-loading 
surface,which always passes through the current 
stress point and keeps a similar shape to the yield 
surface, therefore renamed as the normal-yield 
surface, and an orientation of similarity to the 
normal-yield surface. The subloading surface does 
not only translate but also expands/contracts with 
the plastic deformation. 
     The similarity-center S moves with a plastic 
deformation. Although it was fixed in the origin of 
stress space in the initial subloading surface model, 
using this concept the model has strong capability 
to predict isotropic and kinematics hardening 
behavior for loading, unloading and reloading. 

2.2. Stress State on Planes   The effects of any 
stress/strain path over a simple typical dx,dy,dz 
cube element on an arbitrary sampling plane can 
lead to four stress/strain paths. All stress states in 
the material can be divided to four categories on a 
typical plane which are as follows: 
 
• Compression-Shear with Increasing in the 

Compression 
• Compression-Shear with Decreasing in the 

Compression 
• Tension-Shear 
• Pure Compression 

 
 
Figure 1. Multilaminate framework aspect and planes 
orientations. 
 
 
 

 
Figure 2. Multilaminate planes orientations. 
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In this framework, any form of yield criterion 
including crack effects may be considered for 
different sampling plane to any local behavior 
aspect, and with the summation of all planes 
behavior we approach the media behavior. 
     In most cases of element stress/strain paths the 
compression or tension, accompanied shear is the 
governing case, but for generality of the model, 
pure compression is considered in the model. In 
this way any complex form of stress/strain path is 
analysed into the stated four, on the planes cases 
and lead to proper planar behavior. 
     The yielding criteria proposed for the identified 
cases are introduced as follow: 
 
2.2.1. Compression-shear   When a plane is 
subjected to compression and shear in the loading 
path, two load pattern may exist: 
 

 Increasing or constant shear/compression 
rate with increase in the compression stress, 
sample of this load path is Triaxial 
compression test with the constant lateral 
pressure and increasing axial compression 
stress. The uniaxial compression is a special 
case that shear/compression ratio is constant. 

 Increasing shear/compression rate with 
decreasing compression stress. Sample with 
this load pattern is a triaxial test, when the 
lateral compression is decreased but axial 
compression is remained. 

The behavior of concrete under the above load 
paths is not completely similar thus two separate 
functions are used in the equations. 
 
2.2.1.1. Increasing Shear/Compression Rate 
With Increase in the Compression Stress   In 
this models’ hyperbolic yield function for 
compressive and shear stresses is considered as 
follows: 
 

xσnσ

2
zσ̂

2
yσ̂τ

F(H))2
nσ3Cn(σHCτ)σ̂f(

=
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3C  = Material constant 

 
F(H) = Hardening/Softening Function 
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xisiiH ε+ε+ε=ε=  Plastic strain 

 
Hm = v1 = Model variable  
 
C1,C2 Material constants 
 
v2 Material Strength variable 
 

HiC  Hystersis softening parameter 
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SIGN = 1 for loading/reloading; SIGN = -1 for 
unloading; at the end of previous cycle CH0i = CHi 
value, it may be CH0i = v3.C4 for first loading. 
     The term H0i is value of Hi at the end of 
previous cycle in the first loading (virgin material) 
and it is zero. If the previous load path is pure 
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Figure 3. Normal-yield and Subloading surfaces. 
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compression maxv14Ci0H ε= . 
     The term Ai is cyclic parameter. At the first 
loading, it is C12. Then it becomes: 
 

i0H.13C12CiA +=  
 
at the end of previous cycle. 
     All active planes in the state of loading such 
as uniaxial compression, Biaxial Compression, 
Triaxial Compression and also some planes in 
the Biaxial Compression-Tension test can be 
categorized in the compression-Shear state. Also it 
should be noted that some planes, for example 
plane normal to load in uniaxial compression test is 
in pure compression, but this plane remains elastic 
in the test. 
 
2.2.1.2. Increasing Shear/Compression Rate 
With Decrease in Compression Stress   In the 
model yield function is similar to increasing 
compression stress except the C3 is revised to C5 as 
follows: 
 

)H(F)2
n5Cn(HC)ˆ(f ≤σ+σ−τ=σ  

 
2.2.2.Tension-shear   In this model mohr-
Coloumb linear yield function between tension 
stress and shear stress is used: 
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Hardening is considered in the CH as frictional 
hardening/softening including degrading in the 
cyclic hystersis behavior also FT(Hi)represents 
cohesional hardening/softening and when the crack 
opens the cohesional strength of material is 
considered as zero but the frictional strength is 
remained. 
 
2.2.3. Pure compression state   For pure 
compression exponential function is used as 
follows: 
 

5vcE)v9C(Exp5vcEn −ε−=σ  

5vcE)v9C(ExpcE5vn)
^

(f −ε−+σ−=σ  
 

3/)zyn(v ε+ε+ε=ε  
 

vMaxmaxv ε=ε  at end of loading 
 

=9C  Material constants 
 
v5 = Material variable 
 
Figure 4 Shows this function typically 
 
2.3. Stresses on Planes   For plane i three 
normal vectors is defined and stress is computed as 
follow: 
 

=σi  stress on plane i 
=in

r  normal cosine of plane i 
=im

r  arbitrary vector on plane i 

=il
r

 vector on plane i perpendicular im
r  

Vector summary are as follow 
 
2.4. Kinematic Hardening   Kinematic 
hardening is defined as below: 
 

iiiˆ α−σ=σ  
 

=αi
^

 Kinematics hardening vector  
 

7c
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i

i
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^

=

σ

σ
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C6, C7, material constants 
 
 
 

3. COMPUTATION PROCEDURE 
 
The sequences of computation are as follows: 
 
• First the stress components on each plane 
is calculated, then the kinematic hardening vector 
is calculated based on the value of the plastic strain 
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Hi calculated from previous step. Based on the 
stress state of plane, the yield function is 
calculated. For guaranty to move in or at the 
surface of yield function a penalty function of U is 
defined as: 
 

0.1
)iH(iF

)iˆ(if
iR ≤

σ
=  

iRlniuiU −=  
 
ui = V6 for shear compression state 
 
ui = V7 for shear tension state 
 
U is the function that relates R increment to plastic 
strain increment and it guarantees that Ri is to be 
less than unit, It should be noted that in the 
numerical calculation R may be greater than one 
for 1-2 steps but the penalty function of U adjust it 
to unit even though the load step is large. 
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Similarity center S is the center of subloading in 
the space of stress 
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C10 = material Constant 
 

iSii
~ −σ=σ  
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(b) 
 
Figure 4. Typical yield function (a) Compression/tension 
shear (b) Pure compression. 
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C15 = Material Constant 
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Then the Cp can be calculated with weighted 
summation of all planes. 
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4. CALIBRATION 
 
The parameters of models are divided into two 
groups, fixed parameters, that are the same for 
all normal concrete and need not to be calibrated 
for different concrete, They are parameters C1, 
C2, C15 and variable parameters that should be 
adjusted for each type of concrete such as V1, 
V2, …, V7. 
     The model has been calibrated for experimental 
data in three stages, in the first stage the material 
strength under different classical load paths, 
such as biaxial stresses, uniaxial compression 
and tension, triaxial compression and shear-
compression interaction is evaluated, and the 
parameters of most materials are defined, in the 
second stage the material response and strain are 
evaluated for many load paths such as uniaxial 
compression, uniaxial tension,biaxial compression, 

biaxial compression-tension,triaxial compression 
with an increase in axial compression or decrease 
in lateral pressure, and also concrete behavior 
under pure compression. In the last stage the model 
is evaluated for unloading, reloading and cyclic 
loading. 
     For calibration of variable parameters(V1 to V7) 
that have more effects on the model behavior, 
specified concrete stress-strain data for uniaxial 
compression, uniaxial tension and also a data 
for biaxial or triaxial compression strength are 
necessary for calibration of shear-compression 
and shear-tension states, and test data for pure 
compression should be used for calibration of 
model if pure compression is important. The 
variable parameters ranges are are shown in Table 
3 (SI units). 
     The effect of each variable parameter on the 
model behavior are investigated and are as follow: 
 
V1 Shifts peak stress, increase strain 

of peak stress point 
V2 Increase concrete strength, 

specially shear and tensile strength 
V3 Changes stiffness and also 

compression strength 
V4 Controls on the pure shear strength 

and tensile strength 
V5 Increase material strength in pure 

compression 
V6 Controls material stiffness in the 

compression state  
V7 Controls material stiffness in the 

tension state 
 
Fixed parameters (C1 to C15) has not changed in 
different concrete and the values set can be used 
for normal concrete with compressive strength 
between 20 MPa to 60 MPa but for high strength 
concrete or special concrete such as fiber 
reinforced concrete, these values should be 
adjusted, It should be noted that when more 
accuracy is necessary some of the fixed parameter 
is recommended to be adjusted, for example C3 is 
very important for high confinement or C13 is very 
important for cyclic stress behavior. The typical 
values of fixed parameters for normal concrete are 
shown in Table 3. 
     The effect of each fixed parameter on the model 
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behavior are investigated and are as follow: 
 
C1,C2 Shift post peak and effect on the 

residual stress 
C3 Controls strength on high pressure 

region specially (increasing 
compression) 

C4 Controls stiffness degrading 
C5 Controls strength on high pressure 

region specially (Decreasing 
compression) 

C6,C7 Affect on the kinematic hardening 

C8 Affect on the hardening/softening 
in the tension state 

C9 Increase the plastic limit in pure 
compression 

C10 Control hystersis behavior and 
residual stress 

C11 Affect on the back stress in the 
hystersis, 

C12 and C13 Affect on the hystersis behavior 
C14 Relates the pure compression 

damage to other states of stress 
C15 Affect on the volumetric strain 

TABLE 1. Planes normal Vectors and Weights. 
 

Weight l
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 m
r

 nr  Plane 

27/840 
6
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6
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6
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2
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2
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2
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 3
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3
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27/840 
6
12,

6
1,

6
1

+−+
 

0,
2
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2
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32/840 0, 0, 1  0,
2
1,

2
1

−
 

0,
2
1,

2
1

+
 

5 

32/840 0, 0, 1 0,
2
1,

2
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2
1,

2
1

−
 

6 

32/840 0, 1, 0 
2
1,0,

2
1

−
 2

1,0,
2
1

+
 

7 

32/840 0, 1, 0 
2
1,0,

2
1

 2
1,0,

2
1

−
 

8 

32/840 1, 0, 0 
2
1,

2
1,0

 2
1,

2
1,0 −

 
9 

32/840 1, 0, 0 
2
1,

2
1,0 −−

 2
1,

2
1,0

 
10 

 40/840 0, 0, 1  0, 1, 0  1 , 0 , 0  11 

40/840 0, 0, 1  1, 0, 0  0 , 1, 0  12 

40/840 1, 0, 0  0, 0, 1  0 , 0 , 1  13 
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It should be noted that if only compression-shear 
state is important, the strength of concrete can be 
adjusted with defining V2 and V3 and for adjusting 
Stiffness the variable V6 should be adjusted, Thus 
for compression shear state that is most important 
and practical case only four variable of V1, V2, V3 
and V6 are necessary, For tension and tension shear 
cases variable V3, V4 and V7 should be adjusted 

too. V5 is only significant for pure compression 
and high confinement pressure cases. 
 
 
 

5. MODEL EVALUATION 
 
As illustrated above the model has been evaluated 

TABLE 2. Variable Parameters Ranges. 
 

Variable Parameter Minimum Value Maximum Value Recommended Value(f”c = 40MPa)
V1 0.005 0.05 0.01 
V2 0.2E7 0.5E7 0.3E7 
V3 0.55 0.7 0.63 
V4 0.05E7 0.2E7 0.1E7 
V5 -.002 -.005 -.003 
V6 3,000 8,000 5,000 
V7 100,000 150,000 120,000 

 
 
 

TABLE 3. Constant Parameters. 
 

Constant Parameter Recommended Value (Normal Concrete) 
C1 -0.01 
C2 -0.001 
C3 3.E-9 
C4 1.8 
C5 1.5E-9 
C6 1.6E6 
C7 0.4 
C8 5000 
C9 250. 
C10 300 
C11 200 
C12 -55. 
C13 -5000. 
C14 0.11 
C15 0.20 
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Figure 5. Comparison of model for shear-compression experimental data Bresler [10] and Goode [11]. 
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Figure 6. Comparison of model for biaxial stress experimental data, Tasuji [12]. 

with experimental data from literature for its 
calibration and evaluations in monotonic and cyclic 
loading 
 
5.1. Monotonic Loading   The model is checked 
for different state of monotonic loadings with 
experimental results in the literature such as 
compression-shear, uniaxial compression,uniaxial 

tension,Biaxial compression, biaxial compression 
tension and triaxial compression. 
     Figure 5 shows the comparison of shear 
compression force interaction of model prediction, 
experimented by Bresler, et al [10] and also 
Goode, et al [11] that shows the strength of the 
model is close to experimental result. 
     Figure 6 shows the biaxial stress enveloped by 
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Tasuji, et al [12] with model prediction, The model 
has good fitting in compression-tension and also 
tension-tension region but in the compression-
compression region it is little more than the 
experimental result. 
     Figure 7 shows the result of uniaxial compression 
test (Van Mier [13]) as predicted by model that 

shows very good fitting of the whole response, also 
the volumetric strain results of the model is compared 
with experimental results that is quite fitted. 
     Figure 8 shows the comparison of uniaxial 
tension tests performed by Pettersson, et al [14],the 
model result is close to experimental data and has 
good fitting. 
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Figure 7. Comparison of model for uniaxial compression experimental data, Van mier [13] 
(a) Stress-strain curve (b) Volumetric strain versus stress. 
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     Figures 9 and 10 show the experimental 
data of Sfer [15] for triaxial test under low and 
high confinement with model results,They show 
that model predicts higher strength (7 %) in low 
confinement but it is close to experimental 
result. 

5.2. Cyclic Loading   Different states of cyclic 
loadings such as uniaxial compression, uniaxial 
compression, uniaxial compression-tension and 
proportional and non-proportional triaxial 
compression are considered for evaluation of 
model. 
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Figure 8. Comparison of model for uniaxial tension  experimental data, petersson [14] 
(a) f’c = 42.5 (b) f’c = 56.7. 
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     Figure 11 shows the result of uniaxial 
compression cyclic loading of Sinha [16] with 
model prediction that shows close fitting between 
model result and experiment. 
     Figure 12 and 13 show the result of uniaxial 
cyclic tension and uniaxial tension alternate 

compression experimental test data of Reihardt 
[17] with model simulation that show a good result 
and fitness. 
     Figure 14 shows the result of cyclic shear test of 
Eligenhause [18] with model prediction that shows 
good prediction. 
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Figure 9. Comparison of model for triaxial compression  experimental data (Low Confinement)-, Sfer [15] 
(a) Stress-strain curve (b) Volumetric strain versus stress. 
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     Figure 15 shows the result of hydrostatic 
compression of Bazant [19] with model prediction 
that shows very good fitting. 
     Figures 16 shows the comparison between 
Hurlbeut [20] test data for tri-axial compression 
with constant lateral pressure of 1Ksi (6.91 MPa) 

with model prediction and in Figure 17 the result 
of Scavuzzo, et al [21] triaxial compression test 
when the axial compression decreases with an 
increase in the lateral pressure, as cyclic loading is 
shown, that illustrate good fitting of model and 
experimental results. 
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Figure 10. Comparison of model for triaxial compression  experimental data (High Confinement)-, Sfer [15] 
(a) Stress-strain curve (b) Volumetric strain versus stress. 
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6. CONCLUSIONS 
 
From this research on the basis of substructure a 
model for simulation of concrete behavior under any 
stress/strain path in the multilaminate framework, 

with using sub-loading surface is derived. The 
comparison of model with experimental data such 
as monotonic uniaxial compression/tension, biaxial 
loading, triaxial compression and hydrostatic 
compression, show the good simulation of model. It 
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Figure 11. Comparison of model for cyclic uniaxial 
compression experimental data-Sinha, et al [16]. 
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Figure 12. Comparison of model for cyclic tension 
experimental data-reinhardt [17]. 
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Figure 13. Comparison of model for cyclic compression-
Tension  experimental data-reinhardt [17]. 
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Figure 14. Comparison of model for cyclic shear stress 
experimental data-eligenhause [18]. 
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also shows the capability of the model to predict the 
behavior of concrete under any stress path such as 

uniaxial compression/tension hydrostatic, 
loading/reloading and cyclic triaxial compression. 
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Figure 15. Comparison of model for cyclic Hydrostatic compression experimental data-Bazant, et al [19]. 
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Figure 16. Comparison of model for cyclic tri-axial compression experimental data 
(Lateral pressure = 1 Ksi = 6.91 MPa) hurlbut, et al [20]. 
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