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Abstract   The goal of this study is to introduce a statistical method regarding the analysis of 
specific latent data for regression analysis of the discrete data and to build a relation between a probit 
regression model (related to the discrete response) and normal linear regression model (related to the 
latent data of continuous response). This method provides precise inferences on binary and 
multinomial models which particularly in the case of small samples, has preference to maximum 
likelihood methods. The probit regression model for binary outcomes can be easily and precisely 
explained using different normal distributions for latent data modeling. Applying this approach and 
using Gibbs sampler method needs simulation of standard distributions such as multivariate normal 
distribution. Therefore, it can be easily implemented by many softwares and it provides a general 
method for analyzing binary (or polychotomous) response regression models. 
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هاي نهاني خاص براي تحليل  هدف از اين مقاله معرفي روش آماري مربوط به استفاده از دادهچكيده       

و مدل ) مربوط به پاسخ گسسته(هاي گسسته و برقراري ارتباط بين مدل رگرسيون پروبيت  رگرسيوني داده
هاي  دهد كه استنباط امكان مياين روش . است) هاي نهاني پاسخ پيوسته مربوط به داده(رگرسيون خطي نرمال 

هاي كوچك، به روش  هاي رگرسيون دوحالتي و چندحالتي انجام دهيم كه به ويژه در نمونه دقيقي براي مدل
هاي نرمال  مدل رگرسيون پروبيت براي نتايج دوحالتي را با استفاده از توزيع. نمايي برتري دارد حداكثر درست

بكارگيري اين ابزار و استفاده از . توان توجيه كرد ي به آساني و بادقت ميهاي نهان مختلف براي مدل بندي داده
هاي استاندارد مانند توزيع نرمال چند متغيره نياز دارد كه اجراي آن  گير گيبز به شبيه سازي توزيع روش نمونه

هاي  بررسي مدلافزارهاي كامپيوتري آسان است و روشي عام را براي تحليل و  با استفاده از بسياري از نرم
 .سازد فراهم مي) و چند حالتي(رگرسيون پاسخ دوحالتي 

 
 

1. INTRODUCTION 
 
A vast literature in statistics, biometrics, and 
econometrics is concerned with the analysis of 
binary and polychotomous response data. For 
example in pharmacognosia tests, after using 
different viscosity of special poison on limited 
time duration, the researchers count the dead 
insects and they often want to find the best relation 
between the ratio of death and viscosity of poison. 
     In statistical researches when independent 
variables and dependent variables (response) are 
continuous, regression methods are used. If 
independent variables are discrete and response 
variables are continuous the analysis of variance 

methods, and if some of the independent variables 
are discrete and the others, continuous, the analysis 
of covariance methods will be used. 
     But, in cases where the response variable is 
discrete (regardless of the type of independent 
variables), nonlinear methods are used. These are 
the main parts of statistical researches, especially 
those in the biometry field. As, these investigations 
are very important in applied sciences, their 
analysis methods will be discussed. 
     When the response variable is discrete and 
polychotomous (and there is one or several 
polynomial distributions), it is not simple to 
evaluate the likelihood function for estimating 
polynomial probabilities with common methods 
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(classic, Bayesian and maximum likelihood), 
because of their special defection [1]. 
The regression relation of dependent variable Y in 
terms of one or several independent variables X is 
E(Y|X) = XB. In the case of binary discrete 
response variable instead of data, different 
probabilities are considered proper non linear 
model for regression relation is used. These 
nonlinear models are shown as: E(Y|X) = P(Y=1) 
= P = H(X)  
     H(.) is a certain cumulative distribution function 
called link function and it links conditional 
expectations of variable Y to the independent 
variable(s) X. If in nonlinear regression models for 
discrete data, the variation of Y in terms of X is 
approximately logarithmic, then H is considered as 
standard normal cumulative distribution function 
(Φ) and the probit model is obtained, whereas the 
logit model is obtained if H is the logistic cdf [2]. 
If N is observed independently of the binary 
random variables yi (i=1,…N) with success 
probabilities Pi (Pi parameters  are related to the 
discrete or continuous auxiliary variables by link 
function), the binary probit regression model is 
defined as follows 
 

iu)ix(iy +β′Φ=⇒  
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So, the residuals do not have sufficient information 
to define outliers. While in (normal) Bayesian 
regression models, the residuals have a continuous 
distribution on an interval, and they are more 
efficient to define the outliners; 
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Consequently, a relation is made between the 
binary probit regression models and (normal) 
Bayesian regression models. In this paper, a 
method is introduced to estimate regression 

coefficients vector (β), with iterated sampling of 
(standard or nonstandard) conditional distributions, 
through the Bayesian methods under normal linear 
regression model. The Gibbs sampler is a 
modification of the Metropolis algorithm [3]. The 
Metropolis algorithm was developed to investigate 
the equilibrium properties of large systems of 
particles such as molecules in a gas. 
     Hasting [4] suggests Markov’s chain methods 
of sampling that generalize the Metropolis 
algorithm. Li [5,6] appears to have independently 
developed the Gibbs sampler in the context of 
multiple imputation. In this paper the Gibbs 
sampler algorithm is used with a focus on its 
implementation in the binary and polychotomous 
reponse models [7]. This approach is very similar 
to the data augmentation formework used in 
cencored regression models [8]. 
     If in Bayesian analysis for attaining effect 
estimation, minimizing the E( 2)ˆ β−β  is considered, 
the final estimation would be the posterior 
distribution mean. Then, the polynomial 
probabilities are estimated by the relation between 
these probabilities and the linear combination of 
regression coefficients.  
     As an application, the analysis of the Bayesian 
regression method regarding effects of fourteen 
different environments on relative frequency of 
five kinds of special insects, based on the results of 
a real experience, is mentioned in this paper. 
 
 
 

2. BAYESIAN PROBIT REGRESSION 
 
The probit regression model for binary outcomes is 
seen to have an underlying normal regression 
structure on latent continuous data [9]. Values of 
the latent data can be simulated from suitable 
truncated normal distribution. If the latent data are 
known, then the posterior distribution of 
parameters can be computed using standard results 
for normal linear models. Draws from these 
posteriors are used to sample new latent data and 
the process is iterated with the Gibbs sampling. 
     This data augmentation approach provides a 
general framework for analyzing binary regression 
models. Under the proposed framework, the class 
of probit regression models can be enlarged by 
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using mixtures of normal distributions to model 
the latent data [10] (the mixtures of normal 
distributions are normal distributions that their 
means and variances, or both are definite function 
of random variables with specific distributions). In 
this normal mixture class, one can investigate the 
sensitivity of the parameter estimates to the choice 
of "link function". The method can also be 
generalized to multinomial response models. 
 
 
 

3. THE GIBBS SAMPLER 
 
An algorithm for extracting the marginal 
distributions from these full conditional 
distributions was formally introduced by Geman 
and Geman (1984) [11,12]. 
     The Gibbs sampler was developed and has been 
mainly applied in the context of complex 
stochastic models involving very large numbers of 
variables [13]. The Gibbs sampling is a Markovian 
updating scheme that proceeds as follows: 
     Given an arbitrary starting set of values 
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and 
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will be produced. 
 
3.1. Convergence   (Densities are denoted 
generically by brackets). 
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     The Gibbs sampling through m replications of 
the aforementioned i iterations produces m iid k 
tuples ))i(

kjU,...,)i(
j2U,)i(

j1U(  (j=1,2,…,m), with the 

proposed density estimate for [US] having form 
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4. DATA AUGMENTATION AND GIBBS 
SAMPLING FOR BINARY DATA 

 
Introduce N latent variables Z1,…, ZN where the Zi 
are independent N(x'iβ, 1) and [14] define Yi = 1 if 

Zi > o and Yi = 0 otherwise. Then, )iP(Ber~
id

iY  
 

=β′−>=>=== )ixU(P)0iZ(P)1iY(PiP  
 

)ix()ixU(P β′Φ=β′<  
 
So, the Zi, given the data yi follows a truncated 
normal distribution. By introducing the Zi's in to 
the model, the probit regression model on the 
Bernoulli observations Y is seen to have an 
underlying normal regression on Zi 

)1,0(N~i;iixiZ εε+β′= . 
     As an example [15], consider binary probit 
regression on target variables { }1,0ny ∈ , the probit 
likelihood for the nth data sample taking unit value 
(yn=1) is P(yn=1|xn,β) = ).nx( β′Φ  Now, this can be 
obtained by the following marginalization 
 

ndz),nx|nZ(p)nZ|1ny(P
ndZ),nx|nZ,1ny(p

β=∫

=β=∫
 

 
and as by definition )0nZ()nZ|1ny(p >δ==  then 
it can be seen that the required marginal is simply 
the normalizing constant of a left truncated 
univariate Gaussian so that 
 

.)nx(nZd)1,nx(nZN

)0nZ()),nx|1ny(P

β′Φ=β′

>δ∫=β=
 

 
The key observation here is that working with the 
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joint distribution 
 

)1,nx(
nZN)0nZ(),nx|nZ,1ny(P β′>δ=β=   

 
provides a straightforward means of Gibbs 
sampling from the parameter posterior which 
would not be the case if the marginal term, 

)nx( β′Φ , was employed in defining the joint 
distribution over data and parameters. 
     This data augmentation strategy can be adopted 
in developing efficient methods to obtain binary and 
multi-class Gaussian process (GP) classifiers [16]. 
     By computation of the marginal posterior 
distribution of β using the Gibbs sampling 
algorithm requires only the posterior distribution of 
β conditional on Z and the posterior distribution of 
Z conditional on β, and these fully conditional 
distributions are of standard forms 
 

∏
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If a priori the distribution of β is diffuse, then 
 

)1)XX(),ZX(1)XX((KN~Z,Y| −′′−′β  
 
If β is assigned the proper conjugate N(β*,B*) 
prior, then the posterior distribution of β given Z is 
Nk( B~,~

β ). 
 
where 
 

)ZX**B(1)XX1*B(~ ′+β−′+−=β  
 

1)XX1*B(B~ −′+−=  
 
     The posterior of Z, conditional on β, also has a 
simple form truncated normal distribution as 
follow: 
 
Zi | y, β distributed N(x'i β,1) 
 
Truncated at the left by o if yi = 1 
 
Zi | y, β distributed N(x'i β,1) 
 
Truncated at the right by o if yi = o 

     Given a previous value of β, one cycle of the 
Gibbs algorithm would produce Z and β from the 
mentioned distributions. The starting value of β, β (o) 
may be taken to be the maximum likelihood (ML) 
estimate, or the least squares (LS) estimate (x'x)-1 
x'y. 
     Since the posterior distribution of β given Z is 
multivariate normal, it is possible to generalize this 
model by applying suitable mixtures of normal 
distributions. 
     For example, one can generalize the probit link 
by choosing the link cdf H to be the family of t 
distributions. Let Zi be independently distributed 
from t distributions with locations β'

ix , scale 
parameter 1 and degree of freedom r. the additional 
random variable λi is introduced and distributed 
Gamma (r/2,2/r). Zi|λi is distributed N ( β'

ix ,λi
-1). 

     Suppose a uniform prior is chosen for β and λ = 
(λ1,…,λN) be the vector of scale parameters. The 
fully conditional distributions of β, Z, λ and r are 
given below: 
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and )r(π is the prior on r. 

     It started with 1iset),LSE(yX1)XX(ˆ =λ′−′=β  

for all i, and cycle through the conditional 
distributions Z, β, λ, r, in that order. 
     For making inferences about the regression 
vector β and the probabilities 
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To obtain a posterior density estimate for Pk, it is 
known that 
 

Pk = ).kx2
1

k( β′λΦ  

 
Then by a transformation, the density estimate of 
the probability is given by 
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5. GENERALIZATION TO A 
MULTINOMIAL RESPONSE 

 
The data with multinomial distribution is called 
polychotomous response data. Each yi can be 
considered as a special category. Then there are 
two different situations, multinomial probit model 
with 
 
5.1. Orderd Categories 
5.2. Unordered Categories 

5.1. Ordered Categories   Suppose that y1,…, 
yN are observed, where yi takes one of J ordered 
categories, 1,…, J. 
 
and 
 

J,...,2,1j

N,...,2,1i)jiY(pijP
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The cumulative probabilities are defined 
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The latent continuous random variable Zi 
distributed  )1,ix(N β′  
 
and yi is observed Where yi= j if jiZ1j γ≤<−γ  

)0,J( −∞=γ∞=γ . Then the regression model for 
the { }ijP  is given by β)ixjΦ(γijξ ′−= . 

     If a diffuse prior for (β,γ), is assigned then 
)1,ix(N~jiY,,|iZ β′=γβ  truncated at the left (right) by 

1j−γ  ( jγ ). Finally, γj given Z, y, β can be seen to 

be uniform on the specified interval. To implement 
the Gibbs sampler, start with (β,γ) set equal to the 
MLE and simulate form mentioned distributions. 
After getting the result of Bayes estimate of β 
(posterior distribution mean) and using normal 
regression model 
 

)ixj(ij β′−γΦ=ξ  

 
polynomial probabilities { }ijP  can be calculated. 

 
5.2. Unordered Categories   Probit model for 
polynomial data is considered as follows 
 

)ix(ijP β′Φ=                 
J,...,2,1j
N,...,2,1i

=
=

 

 
i is the index of experimental units and j is the 
index of categories. In unit i, one of the possible J 
results with probabilities of Pi1,…,PiJ observed. 
Latent data Zi = (Zi1,…,ZiJ) was introduced and 
normal regression model 



242 - Vol. 20, No. 3, December 2007 IJE Transactions B: Applications 

J,...,2,1j
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Where 
 

),0(JN Σ  is distributed 
 
Σ  is a JxJ matrix that is parameterized in terms of 
parameter vector θ of dimension not exceeding 

2
)1J(J − . 

     Category j is observed if Zij > Zik and the 
multinomial probabilities are given by 

>ε+β′=≠∀>= ijijx(P)jk;ikZijZ(PijP  

     So, computation of these probabilities entails 
calculation of multiple integrals of the multivariate 
normal density; thus maximum likelihood 
estimation is very difficult to perform for Large J. 
     By the following the Gibbs sampling approach, 
the computation of the multinomial probabilities 
can be avoided. The vector of observed categories 
is denoted as Y = (y1,…,yN) where { }J,....,1yi ∈  
and xi = (xi1,…., xiJ )′ , the preceding model can be 
rewritten as 
     Z = Xβ + ε where ε = )N,........,1( ′ε′ε′ is 
distributed ∑⊗=Ω ).NI,o(NJN  
     The operator ⊗  is the direct multiplication of 
two matrixes and it is defined as follow 
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     To implement the Gibbs sampler, samples 
are required to form the following conditional 
distributions: 
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     If a diffuse prior is placed on β, then 
standard multivariate normal theory yields that 
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the yi th component of Zi is the maximum. Using a 
prior θθπ on)( , the density of this distribution is 
proportional to 
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This distribution is not a familiar parametric family 
and is relatively difficult to simulate. However, in 
Bayesian methods, the conditional distribution 
mode can be introduced as an estimation, after 
calculating the posterior distribution. The 
considered mode can be calculated by using the 
methods of differentiating of matrix functions [17] 
as follows 
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So, one way for estimating θ is to calculate Ri = Zi-

Xiβ and iRiR
^

i ′=∑  in each of the implementation of 

the Gibbs sampler. Then the estimation of matix ∑ 

can be the arithmetic average of ∑
^

i  for i = 1,….,N. 

     Considering the initial values I
)o(^
=∑  and 

)Y1X(1)X1X()o(ˆ −Ω′−−Ω′=β , the samplings 
implement of the fully conditionally distributions 
in the order of Z, β, θ (and calculate the estimation 
of ∑ in each time). After implementing the Gibbs 
sampler with the different initial points m = m*, 
which are iterated t = t* times, the mean and 
variance of the marginal posterior distributions 
could be calculated and the average of vectors can 
be introduced as Bayes estimation [18]. 
Incidentally, in the most of the practical cases t ≤ 
50 and m ≤ 100 were proper for convergence. 
 
 
 

6. A NUMERICAL EXAMPLE 
 
6.1. Experiment and Design   Although it has 
been well documented that coarse woody debris 
are important in temperate forest ecosystems, little 
is known on whether or not these debris have any 
effect on maintaining biodiversity. Thus, the 
following experiment was conducted in order to 
find whether or not decaying logs provide 
microhabitat for the different species of ground-
dwelling arthropods. On the upper coastal plain of 
Georgia, a twelve month study was undertaken at 
two adjacent sites on the Savanna River Site [19]. 
Hundreds of species were collected each month. 
     The dataset contained the following variables 
(with their respective meanings).The first factor 
has two levels: 
 
• MH (Mixed Hardwood) 
• PP (Pine) 
 
The second factor has seven levels: 
• F (Fake Log) 
• CD (Control Dry) 

• CW (Control Wet) 
• GD (Green Log Dry) 
• GW (Green Log Wet) 
• DD (Decomposed Log Dry) 
• DW (Decomposed Log Wet) 
 
The third factor has six levels: 
 
• COLL (Number of collembola collected) 
• COLEOP (Number of coleopterans 

collected) 
• HYMEN (Number of hymenpterans 

collected) 
• SPID (Number of spiders collected) 
• ORTHOP (Number of orthopterans 

collected) 
• MISC (Number of miscellaneous ground 

bugs collected) 
 
Five replications were done for each situation. 
 
6.2. Analysis   For analyzing this experiment, 
fourteen combinations of treatments (2×7) and 
species of ground-dwelling arthropods were 
considered as independent variable and the number 
of species as dependent variable. The dataset of the 
first month are shown in Table 1. 
     The five replications of observations in the first 
cell in Table 1 have been 207, 121, 55, 157, 74, 
therefore the expected number in this cell is 122.8. 
     The vector of observations Y is the number of 
observations collected from treatments. 
     This vector is Y = (y'1,…,y'14)' where y = 
(yi1,…yi6)', and each category has the average of 
five replications. 
     Vector Z also has the same form. The linear 
normal regression model is considered 
 
Zij = x'ij β+ε ij      i = 1,…,14j = 1,…,6 
 
or in matrix form Z = Xβ + ε where  ε = )14,...,1( ε′ε′  

is distributed ),o(N84 Ω  )614I( ∑⊗=Ω  and εI = 
)6i,........,1i( ′εε  is distributed ),o(6N ∑ . 

     The regression coefficients β has the following 
form 
 

β = (βo,β1,…,β5,β6,β7,…,β18)' 
Where βo is the constant of the model and βj (j = 
1,…5) shows the effect of each species and βj (j = 
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6, ….., 18) shows the effect of the combination of 
treatment j on number of species. 
     The independent variables are discrete, the 
auxiliary variables Xi must be used. The matrix of 
X (design matrix) is defined as 
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and Xi is a 6×19 matrix with proper form. By using 
 

the computer program prepared by the author of this 
paper for the mentioned method and iterating Gibbs 
sampler for t = 10, m = 40 the mean and variance-
covariance matrix of marginal posterior distribution 
of β and the mean of posterior distribution as Bayes 
estimation have been calculated for each month. 
Incidentally, in addition to Bayes estimations, the 
calculated maximum likelihood estimations, for 
comparison, are shown in Table 2. It is well found 
that the results are reasonable and expected. 

Variance-covariance matrix S (19×19) ∑
∧

)(  also is 

calculated, but because of its large dimensions it has 
not been shown here. 

 
 
 

TABLE 1. Expected Numbers of Insects in Month One. 
 

Kind of 

Insect 

Treat 

Coll Coleop Hymen Spid Orthop Misc 

PP-F 122.8 5.2 6 3.8 0.8 29.4 

PP-CD 80.6 8 3.8 1.4 0.6 18.4 

PP-CW 85.2 9.4 4.6 1.6 0.4 10.4 

PP-GD 116.2 6 5.2 3.8 0.4 19.6 

PP-GW 134.4 6 1.8 2.2 0.6 13.8 

PP-DD 114 4.6 8.4 3.6 0.4 27.4 

PP-DW 101.2 8.2 11 3.2 0.8 19.6 

MH-F 59.8 1.4 8.8 1 0.8 3.6 

MH-CD 99.4 3.2 7 2.4 2.4 3.6 

MH-CW 96.4 2.4 6.8 1.2 1.2 2.8 

MH-GD 108.2 1.4 10.6 1.4 0.8 2.4 

MH-GW 101.4 2.2 5 1 1.4 3.6 

MH-DD 73 10.2 8.6 1.2 0.8 6 

MH-DW 48.2 3.4 6.2 4 1.2 13.2 
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6.3. Hypothesis Testing   Regarding the results, 
the following hypothesis testing and inferences can 
be performed: 
 
6.3.1. For each month, hypothesis testing 
 

⎪⎩

⎪
⎨
⎧

≠β

=β

o :1H

o :oH
 

 
has been considered where Ho is “The kind of 
insects and different environments have no effect 
on the frequency of insects”. 
     As the matrix ∑ is unknown, matrix S is used. 
The critical region of Ho is 

)Pn,P(F
Pn

P)1n()o
ˆ(1S)'o

ˆ(n2T −α−
−

>β−β−β−β=  

 
Where 
 
n = 40   P = 19   05.0=α    βo=o. 
 
For example the value of test statistic T2 for the 
first month is  
 

16.3241
ˆ1

1S1
ˆn2T =β′−β′=  

 
86.75)Pn,P(F

Pn
P)1n(

=−α−
−  

TABLE 2. Estimations of Regression Coefficients in Month One. 
 

ML Estimations  Bayes Estimations 
2.067 e + 000 1.909 e + 000 
1.450 e + 001 1.431 e + 001 
1.751 e + 000 1.635 e + 000 
5.292 e + 000 5.194 e + 000 
8.148 e – 001 7.513 e – 001 
1.979 e – 001 8.187 e – 002 
-2.931 e + 000 -2.776 e + 000 
-1.261 e + 000 -1.055 e + 000 
-2.523 e + 000 -2.325 e + 000 
-1.883 e + 000 -1.401 e + 000 
-1.474 e + 000 -1.085 e + 000 
-3.204 e + 000 -2.883 e + 000 
-2.078 e + 000 -1.907 e + 000 
-2.037 e + 000 -1.986 e + 000 
-3.434 e + 001 6.425 e – 002 
2.452 e + 000 2.585 e + 000 
-1.143 e + 000 -1.236 e + 000 
1.498 e + 000 -1.231 e + 000 
-2.073 e + 000 -1.845 e + 000 

 



246 - Vol. 20, No. 3, December 2007 IJE Transactions B: Applications 

324.16 > 75.86   so, Ho is rejected. 
 
6.3.2. For each month hypothesis testing 
 

⎪⎩

⎪
⎨
⎧

β≠β

β=β

o :1H
o :oH

 

 
Where 
 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

×β
×

=β
1131

ˆ
16o

o  

 
has been considered that Ho is “The kind of insects 
has no effect on the frequency of insects”. 
     86.7511895)o

ˆ(1S)'o
ˆ(n2T >=β−β−β−β=  so, Ho 

is rejected. 
 
6.3.3. Hypothesis testing for each level of 
factors; 
 

For example in the fourth month:
⎪⎩

⎪
⎨
⎧

≠β

=β

o7 :1H

o7 :oH
 

where Ho is “The environment MH-F has no effect 
on frequency of insects" (MH-F is the seventh 
regression coefficient in vector β). 

     Test statistic 218.1
17.5
77.2

7
ˆS
7

ˆ

ct −=
−

=
β

β
=  where 

is in acceptance region )39(
025.0tt)39(

025.0t <<−  

therefore, Ho is accepted. 
 
6.3.4. The hypothesis testing for comparing two 
different regression factors is considered as: 
 

j,i
ji :1H
ji :oH
∀

⎪⎩

⎪
⎨
⎧

β≠β

β=β
 

 
which with ji β−β=Δ  is converted to equivalent 

test 
⎪⎩

⎪
⎨
⎧

≠Δ

=Δ

o :1H

o :oH
. Statistic j

ˆ
i

ˆD β−β=  is distributed 

)ji22
j

2
i,(N σσ−σ+σΔ  )1n(t~

DS
D

ctSo −
α=  

)jSiS22
jS2

iS2
DS( −+=  and the critical region of 

Ho is )1n(tct
−

α> . 
     For example in the fifth month we can test 
 

⎪⎩

⎪
⎨
⎧

β>β

β=β

1614 :1H
1614 :oH

 

 
where H1 is “The PP-CW is more effective than 
MH-DW on frequency of insects 

612.016
ˆ

14
ˆD =β−β=  

 

034.3
0408.0
613.0

ct0408.02
DS ==→=  

 
)39(

05.0tct68.1)39(
05.0t >→=  

 
Therefore, H1 is accepted. 
     For example in the fifth month these hypothesis 
testing can be performed for comparing each two 
desired factors. 
 
 
 

7. CONCLUSION 
 
The main novelty of this paper, has been that by 
introducing latent data into the problem, the probit 
model on the binary response is connected with the 
normal linear model on the continuous latent data 
reponse. A simulation-based approach has been 
introduced for Computing the exact posterior 
distribution of regression coefficients. 
     Applying this approach allows one to perform 
exact inference for binary regression models; this 
will likely be preferable to ML methods for small 
samples and is especially attractive in the 
multinomial setup, where it can be difficult to 
evaluate the likelihood function. 
     By using Gibbs sampling for simulation from 
standard distributions, one is introducing extra 
randomness into the estimation procedure and it is 
important to understand when a particular 
simulation process has converged. 
     In the numerical example, the role of coarse 
woody debris on macroarthropod diversity has 
been shown. Computer results related to estimated 
regression coefficients, using the proposed data 
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augmentation method, also the ML estimations for 
comparison and some possible hypothesis testing 
for inference have been illustrated. Augmenting 
binary and polychotomous response models with 
Gaussian latent variables enables exact Bayesian 
analysis via Gibbs sampling from the parameter 
posterior. 
     Because the relative simplicity of this 
simulation method in this application, it is believed 
that there will be future research into the 
automation of this algorithm so that it can be 
incorporated into standard statistical software. 
 
 
 

8. NOMENCULATURE 
 
Ber: Bernoulli Distribution 
d: Distributed; 
E: Expected Value; 
F: Snedecor’s F Distribution; 
H0: Null Hypothesis; 
H1: Alternative Hypothesis; 
id: Independent Distributed; 
iid: Independent and Identically Distributed; 
N(μ,σ): The Normal Distribution with Mean μ 

and Standard Deviation σ 
P: Dimension of Vector β; 
S: Covariance Matrix of Sample; 
t: Student’s t Distribution; 
u: Residual; 

)i(
kU : K ‘th Observation of i ‘th Iteration; 

Φ: Cumulative Distribution Function of 
Standard Normal Distribution; 

β: Regression Coefficient Vector; 
β̂ : Estimation of β; 
β0: Initial Value of β; 
θ: The Unknown Vector Parameter of 

Dimension not Exceeding 
2

)1J(J − ; 

∑ : J Dimensional Covariance Matrix of 
Population in Terms of θ; 

ξ: Cumulative Probability; 
α: Significance Level of a Test; 
ε: Error of Estimation; 

)(θΩ : NJ Dimensional Covariance Matrix of 
Population in Terms of θ; 
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