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Abstract  The ray series method may be generalized using a ray centered coordinate 
system for general 3D-heterogeneous media. This method is useful for Amplitude Versus 
Offset (AVO) seismic modeling, seismic analysis, interpretational purposes, and 
comparison with seismic field observations. 
For each central ray (constant ray parameter), the kinematic (the eikonal)  and dynamic ray 
tracing system of equations are numerically solved. Then, the ray impulse and the ray 
synthetic seismograms are efficiently computed. The reflected, refracted, critically 
diffracted,  multiples and converted P-waves and/or S-waves are computed and evaluated at 
the ray endpoints. The central Ray Method application to two-dimensional models are 
investigated and comparison with seismic wave field are successfully done. Two examples 
of the ray field and synthetic seismograms for the complex models are presented here both 
for surface seismic profiling (SSP) and vertical seismic profiling (VSP).  
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تعميم داده ناهمگن -روش سري هاي پرتو با بكارگيري دستگاه مختصات پرتو مركزي براي محيظ هاي سه بعدي   هچكيد
  و مقايسه با داده هاي ) آ، وي، او(ي  تفسير و مدلسازي لرزه اي دامنه برحسب فاصله از چشمه اين روش برا. شده است

  .لرزه اي  صحرائي بكار مي رود
يكي و ديناميكي مسير پرتو براي هر پرتو مركزي به روش محاسبات عددي حل مي و بصورت سينماتدستگاه معادلات پرت

  .سپس نگاشت مصنوعي اوليه و نگاشت هاي آميخته شده با الگوريتمي كه محاسبات را تسريع مي نمايد حل مي شود. شود
. ه مي شودشي در نقطه انتهايي هر پرتو محاسبامواج بازتابي، انكساري، پراكنشي و چند گانه و بخصوص امواج تبديلي و بر

 كه نتايج گرديدروش پرتو مركزي در مدل هاي دو بعدي و سه بعدي محاسبه شده و نتايج با داده هاي صحرائي مقايسه 
چند مثال از مدلسازي روش پرتو و محاسبات نگاشت هاي مصنوعي براي مدل هاي ساده و . قابل قبولي بدست داده است

اين روش را مي توان براي مدلسازي لرزه اي سطحي و . پيچيده محاسبه شده و با هم مقايسه گرديده استمدل هاي 
  .عمودي مورد استفاده قرار داد

  
  
 

1. INTRODUCTION 
 

Synthetic seismograms introduced in this paper, is 
an aid to understand and interpret wave 
propagation phenomena through realistic earth 
models for both SSP and VSP data.  

Many techniques are now available for the 
computation of synthetic seismograms. One of the 
fast technique which can be easily applied to 
elastic heterogeneous media is the ray method and 
its various modifications[1-3]. A similar approach 
to the ray method, with extension to wavefields in  
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laterally heterogeneous media, the so called 
Gaussian Beam Method was developed by 
Cerveny[4] and Cerveny et. al.,[4, 5].  
The central ray technique is used to construct  
synthetic seismograms with non-zero torsion[6], as 
in Asymptotic Ray Theory (ART), the whole 
wavefield is decomposed into small contributions 
corresponding to individual rays. The central ray 
information is taken and the Gaussian distribution 
is applied, such that each ray tube converges at the 
receiver with a finite number of iterations. This 
method can be used to compute synthetic 
seismograms for curved interfaces, laterally 
heterogeneous media, and block structures, both 
for SSP and VSP seismic applications. 
VSP is one of the fast and high resolution method 
used in exploration of oil and gas. It consists of 
two parts: 
a) recording borehole VSP data, 
b) data simulation processing . 
Simultaneous interpretation of synthetic and real 
VSP data helps the geophysicist to better 
understand the links between SSP and downhole 
well logs. 
In this paper the application of the Central Ray 
Method to two-dimensional models are 
investigated and the comparison with seismic wave 
field are successfully done. 
Zednik[7] has generated a package for the three-
component ray-synthetic seismograms. Cerveny 
et.al.[8] explain the main principles of dynamic ray 
tracing in ray centered coordinates, introduce the 
ray propagator matrix, summarize its applications 
and determine the geometrical spreading.  
In the current paper all cases will be covered by 
introducing a scale factor in a single Algorithm. 
The technique used here gives faster results and 
takes less time compared to those of Cerveny 
et.al.[8] and Zednik [7]. They also use constant 
Gaussian beam, but variable Gaussian beam at the 
endpoint is used here. 
 
 
 

2. GOVERNING EQUATIONS AND 
METHOD OF SOLUTION 

 
The governing equations are given in reference [4]. 
But since there is no analytical solution for the 
general case, the following numerical method is 

used.  
In a 3D-heterogeneous media the general wave 
displacement vector wρ , in the vicinity of the 
central ray can be written in a compact form as; 
 

),,,(),,,(),,,( 2121||21 tqqswtqqswtqqsw ⊥+=
ρρρ

                      
(1)  

where ||wρ , ⊥wρ  are the parallel (for P-wave) and 
normal (for S-wave) wave-displacements to the ray 
direction, respectively. 
Components of equation (1) at time t with s as the 
arc length in the direction of the central ray at point 

 for high-frequency P and S-waves, O Pwρ  and swρ  
become: 
 

221121 ),,,( eUaeUatUptqqswP
ρρρρ

++=      (2) 

221121 ),,,( eUpeUptUatqqsws
ρρρρ

++−=          (3) 
 
Where, ( 21,, eet ρρρ

) are the right-handed bases 
vectors at point  and   are the centeral 
ray curvilinear coordinate of point  in the 
vicinity of O (Figure 1).  

O ),,( 21 qqs
o

The principal,  and additional,  
components of P and S rays are given by: 

Up Ua

 
nUEUp =                                                      (4) 

nUMsVEUa )(η=                                            (5)  
 
where ; 

}2/))]()([{(exp
0∫ +−−=
s T qMqsQsVdstiE ω  

(6) 
mn UCU =                                                  (7) 

mnRJsVJsVC ])([]~)(~~[ ρρ=          (8) 

JsVSU om )(ρ=                   (9) 

2,1,][][ === jiQPMM ij                   (10) 

 
where, M is the wavefield travel-time matrix of the 
complex second derivatives P and Q given in 
section-3 and can be computed by solving the 
dynamic ray tracing system,  is the quality 
(attenuation) factor of the media, 

)(sQ
ω  is the source 
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angular velocity and  is the wave velocity 
along the ray. Tilda in equation (8) represents the 
wave discontinuities at the primary interface or 
variation at any point, i.e. properties of the layer at 
the generated or propagated ray side. 

)(sV

ρ  is the 

density, J is the Jacobian matrix given by Cerveny 
et al[2]. Rmn, is the modified version of matrix 
plane wave reflection and transmission coefficients 
at first order interface, but is one for second order 
interface[2].The computational procedures of the 

Figure 1. Global and local coordinate systems, central ray, its vicinity point O, first order interface and local 
coordinate (x1,x2,x3) for 3-D seismic study of heterogeneous media. 
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dynamic ray tracing system with the corresponding 
initial conditions are given by Cerveny and 
Hron[9]. So is source characteristic function given 
as;  

)()( 2
1

0000 tgSinDVS ρ=   for point source (11)            

)()( 2
1

000 tgVS ρ=                 for line source,   (12)                
 
where the source function is given by: 
 

)()]/2([)( 222 φωω +−= tCosdtExptg          (13)                                   
 
φ  is phase function, d is a scale factor. The source 
could be either P or S-wave. There are no 
additional components for SH-waves. , and 

 are the incident and generated coefficient 
vectors corresponding to P, SV or SH-waves. 

)(sU m

)(sU n

η  in 
equation (5) is a case factor to generate the 
following cases:  
Case (1) 00 == Mandη : ART method of 
Cerveny  et. al.[2].    
Case (2) : Extended 
Geometrical Ray Method[1]. 

1and1 =η Mφ

Case (3) ][and1 realM ==η : Central Ray 
Method [8].  
Case (4) ][and0 complexM =>η : Gaussian 
Beam Method [4]. 
Case (5) ][and0 realM =>η : Paraxial 
Ray Approach[5].   
In this paper the governing equations (4) and (5) 
are solved for case (3) based on variable  
super-position of Gaussian beams. 
 
 
 

3. COMPUTATION OF THE JACOBIAN 
MATRIX AND RAY TORSION 

 
The geometrical spreading of a wavefront can be 
defined in terms of Jacobian matrix J, of the 
transformation from the local cartesian coordinate 
into central ray coordinate system, 

VqqsJ )],,(),,([ 2121 γγϕ∂∂=          (14) 
Where, 21 γγ and  are the ray parameters. ϕ  
denotes the eikonal function along  the central ray, 
given as; 

)()(21 2 sVqsKωωϕ =                          (15)  
 

2
2

2
1

2 qqq +=                                                    (16) 
 
The Jacobian matrix  is used to transfer the 
cross-sectional area of a ray tube  from 

J
dA 21 qq −  

to 21 γγ −  plane, i.e.; 

21 γγ ddJdA =                                              (17)  
 
Wesson[10], Cerveny[2] and Hubral[11] have 
introduced various methods to compute Jacobian 
determinant J . The most general one is to take 

partial derivatives of space coordinates, ( ), 
and generalized impulses with respect  to (

21,qq

21,γγ ). 
This method was originally proposed by Popov 
and Psencik[12]. Equation (14) for two 
dimensional case can be represented by a second-
order matrix instead of a third-order one, i.e.; 
 

VqqJ )],(),([)( 2121 γγϕ ∂∂=                      (18)  
Then; 

VqqqqJ )( 12212211 −=                                 (19)  
Where; 

2,1, =∂∂= jiqq jiij γ                                    (20)  
 
In a general three-dimensional hetrogeneous 
media, when the ray torsion is not zero ( 0≠τ ), 
the dynamic ray tracing system can be written 
as[9]; 
 

GH
d
dG

=
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                                             (21) 

Where, matrices  are given by:  GandH
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where; 

)0( 21
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==
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∂
= qqat

qq
VV

ji
ij                      (23)          

To solve for geometrical spreading, using the 
system (21), we must first know a point (x,y,z) on a 
central ray and the angles  defining the 

direction of the tangent 

DandI ˆˆ

t
ρ

. Angles  can 
be determined numerically using the eikonal ray 
tracing system; 

DandI ˆˆ

 
 ICosDSinVddx ˆˆ=ϕ                                       
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                                                                           (24) 
Where; 

z
VV
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VV

x
VV zyx ∂

∂
=

∂
∂

=
∂
∂

= ,,         (25)  

 
If the coordinate system ( 21,ee ρρ

) does not rotate 
around the central ray (i.e. =τ 0), then equation 
(21) is computationally faster than when it rotates 
(i.e. ≠τ 0). The solution accuracy of the equation 
(21) can be checked by residual factor F given as; 
 
( )          (26)  1112222121221211 pqpqpqpqF −+−=
 
F takes values between zero and one. If F is zero 
the solution is exact. 
The initial conditions for the equation (21) are: 
a.for the point source;    
 

⎥
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⎤
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V
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b.for a line source;  
assuming locally homogeneous medium in the 
vicinity of the source along ,1eρ  
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⎦
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c-for a continuous ray(general case); 
 

00 , PPQQ ==                                              (29) 
 
Subscript 0 means any initial condition at source. 
The computational procedure would be much more 
complicated if the velocity changes across an 
interface of the first or second order.  
To compute the Jacobian matrix, J, along the 
central ray of a generated wave, the initial 
conditions must be known at the boundaries. The 
relation between  and ),( PQ )~,~( PQ  depends on 
the orientations of the vectors ),( 21 ee ρρ

 at the point 
of incidence on the interface (O). Let the local 
cartesian coordinate system (x1,x2,x3) at the point 
of incidence be such that, x3-axis is perpendicular 
to the interface, x1-axis lies in the plane of 
incidence (Figure 1).  
Take 1eρ  along the x2-axis and 2eρ  the x3-axis. Thus 
the initial conditions at first and second order 
interfaces become; 
 

θθ

θθθ

θθ

θ

~

~~~
,~~
2~,~

12

2122

22

2212211111

SinSinSQ

SinSQSinSinPP

SinSinQQ

SinSQRDQPPQQ

i

iii

ii

iiiiii

−−=

=

−−==

                                                                           (30)    
 
The coefficients of the approximation equation of 
the non-planar interface  in the 
vicinity of the point of incidence in the local 
coordinate system (x

0)x,x,(x 321 =F

1,x2,x3)can be written as: 
 

02 3
2

2222112
2

111 =−++ xxDxxDxD ε      (31) 

)( DCosFDSinFSign yx −−=ε                (32)  
 
D is the angle between the tangent to the ray and 
the positive direction of the general x3-axis at the 
point of incidence. ε  in the interface equation (31) 
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may be  depending on the orientation of normal 
to the curved boundaries. If 

1±
1−=ε  as calculated 

from equation (32) then normal to the interface is 
in the positive x3-direction, (i.e. interface is 
convex). If 1+=ε  as calculated from equation 
(32) then normal to the interface is in the negative 
x3-direction, (i.e. interface is concave). The 
parameters in equations (27), (28) and (29) are; 
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θθ ~and  are the angles between the positive 

direction of the local -axis and the tangential to 
the ray of the incident and generated waves, 
respectively. The angles are defined positively 
clockwise from the local x

1x

1-axis, where they are 
related to the acute angles between the local x3-axis 
and tangential to the corresponding ray.  
The components of the unit normal to the non-
planar interfaces can be computed using the phase 
matching methods[9] and [1]. 
 
 
 

4. MODELLING EXAMPLES 
 

To show the applicability  and reliability of the 
Central Ray Method in laterally as well as 
vertically heterogeneous media two computer 
packages (CRM-SSP and CRM-VSP) are written 
based on the above formulas and their flowcharts 
are shown in Figure 2. 
Examples for both surface and vertical seismic 
profile data are considered. 

Flowchart illustrates the procedure for iterative 
modeling used to compare a synthetic section and a 
real seismic data.  
 
Case study I: Surface Seismic Profiling (SSP)  
The P-wave point source and the receivers are 
located near the earth’s surface while the direct 
wave has been omitted. Synthetic seismograms are 
computed for a constant Poisson’s ratio 
( 25.0=σ ). The distortion of waveforms due to 
recording equipment is not taken into account. The 
converged solution obtained by CRM-SSP 
program is shown in Figures 3 and 4 as follows; 
*The obtained model and ray diagram in Figure 3a,  
*The stacked seismic section (real data) in Figure 3b, 
*The superimposed section (Figure 3c) of the 
records illustrating the obtained seismic section in 
Figure 3b, 
*The NMO & STACK in Figure 3d, 
*The MIGRATED section after stack in Figure 3e,  
*The twenty four computed synthetic seismic 
records in Figure 4. 
The real data and synthetic sections are compared 
in Figure 3a which shows very good approach to 
the geometrical model. 

 
Case study II: Vertical Seismic Profiling (VSP)  
This part deals with modelling of VSP synthetic 
used for interpretation of VSP seismic data. The 
seismic source is located at the earth’s surface and 
the receivers are located in borehole. In this 
example the explosive point source is located 10 ft 
below the earth’s surface. Three differen truns are 
given in a-500, b-900 and c-1500 feet from the 
borehole.  
The converged solution obtained by CRM-VSP 
applied to an 80 degree dipping fault zone for 
source locations a-500, b-900 and c-1500 are 
summarized in Figures 5 and 6 as follows; 
• The final fault model and its corresponding 
model, the source, the 30 receivers locations and 
the ray diagram in Figure 5, 
• The synthetic VSP model computed using ray 
tracing program  package showing primary 
reflection branches from horizons (1,2and3), the 
first order multiples and direct arrivals in Figure 6, 
The converged solution obtained by FDM-VSP 
applied to an 80 degree dipping fault zone for 
source locations a-500, b-900 and c-1500 are 
summarized in Figures 7 and 8 as follows; 
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Initial Model Parameters; 
ρ, Vp, Vs, Interfaces, 
Grids for trial model 

Field Data 

Processing of Real Data 

Ray Diagrams, 
Travel Times, and 
Seismic Sections 

Final sections 

Processing of Synthetic Seismic Sections, 
Super position of Common Shots, 

NMO,  Stacks 

Final sections 

Comparison 

Modify the Model 
Parameters 

Geological  
Model 

 

Yes           No

Figure 2. Flowchart for CRM-SSP, CRM-VSP & FD-VSP packages. 
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Figure 3. a-Final geological model, point source location, receivers, formation layers and 
the ray diagram. 

b-The Seismic (stack-section). 
c-Superimposed section. 

d-NMO (Normal Move Out)and stack-section. 
e- Migrated section 
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Figure 4. 24 synthtic seismic sections stacked to costruct superimposed section shown in Figure 3c. 

Figure 5. Final fault model, its corresponding rock parameters, 30 receivers locations, ray diagrams for the following 
source locations: a- 500’, b- 900’, c- 1500’ 

 



The finite difference and free surface multiple reflection 
waves, the up-coming and the down-going waves 
together with multiples in Figure 7, 
• The superimposed structural model and 
wavefield snapshots (a-f) in Figure 8. 

The VSP ray synthetic and finite-difference VSP 
sections are compared, which show very good 
agreement for three different source locations 
(near, intermediate and far-field offset). 

 

Figure 6. Ray VSP synthetic section for the following source locations; 

a-500’, b-900’and c-1500’ 

  

Figure 7. The finite difference VSP section for the following source locations;  

a-500’, b-900’and c-1500’. 
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Figure 8. Superimposed structural model and wavefield VSP finite differenve snapshots(a-f), 
(Snapshot time step 52ms). 

5.CONCLUSIONS 
 

The correction for nonzero offset effects are done 
by applying conventional NMO and stack (Figure 
3d).The aplication of finite difference migration to 
migrated synthetic section is slightly incorrect and 
does not show complete collapsing (Figure 3e). 
This may suggest that DMO (Dip Move Out) 
should be applied befor migration. The agreement 
between observed data and synthetic time branches  
is close (both with and without time migration). 
Therefore the superimposed section can be used 
with an initial model for a check before iterative 
modelling and to check the reliability of the 

method for the complex geologic models. The 
absorbing boundary conditions of Clayton and 
Engquist [13] are used in finite difference 
computations. The local stability condition used 
is ,2Vht Δ≤Δ ∆h is mesh dimension. 
Figures 5-8, illustrate that the sensitivity of the 
seismograms to any structure are a function of 
source and receiver geometry. However, the 
methods reliability in the construction of 
waveforms are functions of velocity gradients in 
the model and the frequency present in the source.  
Comparison of Figure 6 and 7 show that the fault 
model can be constrained more precisely by the 
Ray method than the second-order finite-difference 
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method. The effects, such as phase shift and 
Amplitude Versus Offset (AVO), interferences and 
lateral changes of the velocity model can be seen 
in the VSP’s, computed by both the Ray method 
and the finite-difference program.  
In conclusion , we can say that the conventional 
migration after stack is not always correct way to 
do time or structural migration (Figure 3e). For this 
type of geological structures (fractured or fault 
models) ray-equation migration may be useful.  
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