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Abstract  Oxygen is an essential part of the living organism. It is transported from blood to 
the body tissue by the systematic circulation and large part of it is stored in the blood 
flowing in capillaries. In this work we discuss a mathematical model for oxygen transport 
in tissues. The governing equations are established assuming that the blood is flowing along 
a co-axial cylindrical capillary inside the tissue and has a constant partial pressure of 
oxygen. We solve the governing partial differential equations using finite element 
techniques. The main object of the present work is to investigate the effects of various 
assumptions such as neglecting axial diffusion, neglecting the effect of facilitated 
myoglobin diffusion etc. 
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 از خـون بـه   ،اکسيژن توسط يک چـرخش نظـام يافتـه   . بخش عمده اي از بافت زنده را اکسيژن تشکيل مي دهد          هچكيد

در کار حاضر يک مـدل رياضـي بـراي جـا بـه      . ها ذخيره مي شود    بافت هاي بدن منتقل و بخش عمده اي از آن در مويرگ           

معادلات حاکم بر اين مدل، با فرض حرکت خون در راستاي لوله هاي موئين استوانه . جايي اکسيژن در بافت ارائه شده است

معادلات ديفرانسيل جزئي به روش المان محدود حل . اي شکل هم محور و ثابت بودن فشار جزئي اکسيژن نوشته شده است

مهم ترين هدف کار حاضر بررسي تأثير فرضيات مختلف نظير حذف نفوذ محوري، حذف اثر نفوذ تـسهيل شـده                    . شده است 

 .ميوگلوبين و غيره مي باشد

  
       
   

  
 

1. INTRODUCTION 
 

Blood consists of many components such as (i) the 
red blood cells, which contain the protein molecule 
that acts as the carrier of oxygen and carbon 
dioxide in the human system, (ii) the white blood 
cells which ingest and destroy harmful bacteria’s 

and dead cells and behave as the defense forces of 
the body against infection and injury, (iii) platelets 
that help in the clotting of blood and (iv) plasma 
which is the liquid part of the blood and contains 
several salts, glucose, amino acids, proteins, 
hormones etc. Here we are considering our study 
only on transport of oxygen in the blood. Oxygen 
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is transported to the tissues by the systemic 
circulation. During its transport in capillary region 
a small fraction of oxygen is dissolved in plasma. 
While in tissue region it is driven by pressure 
gradient. Oxygen stored in tissue may be dissolved 
or chemically bound to myoglobin. A large amount 
of oxygen stored in the blood flowing into the 
capillaries is chemically bound to hemoglobin. As 
the oxygen is transported from blood to tissue, 
therefore it involves convection, diffusion and 
reaction processes.  
Schubert and Zhang [7] reported about the 
importance of axial diffusion in the experimental 
data through a model consisting of cylindrical 
capillary with blood flowing through it, and 
surrounded by a co-axial cylindrical tissue 
compartment, despite the common assumption of 
neglecting diffusion in the direction of blood flow,  
Sharan et al [4] considered a single capillary 
surrounded by a co-axial cylindrical tissue 
compartment. In this capillary, diffusion is in both 
axial and radial directions. Many researchers have 
investigated the solution of the governing 
equations using various simplifications. Murray [2] 
considered the one-dimensional transport of 
oxygen through a solution containing either 
hemoglobin or myoglobin. Reaction terms, 
between oxygen and myoglobin in the tissue and 
between oxygen and hemoglobin in the blood, are 
taken of non-linear nature. This model considers 
diffusion in one dimension and reaction between 
oxygen and either hemoglobin or myoglobin 
molecule. 
 
 
 

2. OUR MODEL 
 
The geometry of the present mathematical model is 
explained by figure 1. Here blood flowing into the 
capillary from the artery is named as arterial blood. 
The equations governing oxygen transport in the 
capillary are: 
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Here Ac is the reaction term of hemoglobin with 
oxygen. As in Kapur [3] 
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Using the dissociation curve given by Kelman [1], 
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The constants used in equation (4) are given by 

3
1 105322289.8 ×=a

3
2 101214010.2 ×=a

2
3 107073989.6 ×−=a  

5
4 103596087.9 ×=a

4
5 101346258.3 ×−=a

3
6 103961674.2 ×=a  

3
7 107104406.6 ×−=a  

 
When oxygen pressure and hemoglobin saturation 
are in equilibrium then reaction term (3) in the 
governing equations will vanishes.  
Governing equations in tissue region are: 
 

QApDa ttt +−=∇ 2                                          (5) 

tmm AMDC −=∇ 2                                              (6) 

 
Here ‘At’ is reaction term between oxygen and 
myoglobin and is given by 
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and in equilibrium, the dissociation curve for 
myoglobin saturation is 
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Figure 1. Geometry of Mathematical Model used. 

 
 
 
 

 
 

Figure 2. The oxyhaemoglobin dissociation curve 
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Figure 3. The oxyhaemoglobin dissociation curve 
 
 
 

 
 

Figure 4. The derivative of the myoglobin dissociation curve 
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At the reaction term, (after combining both the 
equations (7) and (8)), can be written as 
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Boundary conditions for both the set of equations 
are given below: 
 
(i) No diffusion flux of Myoglobin outside the 
tissue 
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(ii) No diffusion flux of hemoglobin outside 
capillary across any other boundary 
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(iii) p and the flux of oxygen are continuous across 
the capillary tissue interface, therefore the 
condition are: 
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(iv) Hemoglobin saturation is in equilibrium with 
partial pressure of oxygen in blood entering the 
capillary 

ca rrzpfH ≤≤== 00;)(  

(v) The flux-dissolved oxygen per unit area is  
given  by D ,∇  and is zero across closed 
boundaries. In addition to that we assume a non-
diffusion flux condition where blood flows out of 
the capillary and so 
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(vi) Radial symmetry: 
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(vii) P is initially in equilibrium with arterial 
blood: 
 
 'a

pp = ,0=z crr ≤≤0  
 
(viii) For a unique solution of fractional myglobin 
saturation M, we have: 

)),((),( tt rbpgrbM =  
 
In the next step we non-dimensionalize the model 
equations, where we choose scaling such that the 
non-dimensional variables range from 0 to 1. Here 
L is the length scale to be chosen appropriately. 
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then equation (1) and (2) turn to the equations 
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Neglecting the terms of )10(0

2− the size of the 
largest terms, 
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Partial Pressure 
 

 
 
 
 
 
 
 

Haemoglobin Saturation  
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Figure 5. The solution of the governing equations, Eqs. 
1-6 and 9 with Pa = 600 mmHg. 
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With the help of (13) and (14) we have 
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3. TISSUE REGION 
 

 Using the parameters 
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equation (5) and (6) turn to 
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On neglecting terms of size )10( 2−O , the 
magnitude from equation (18) is given by 

0
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from which we deduce that we can assume an 
instantaneous reaction and g(p) = 0.  

4. RESULTS AND DISCUSSION 
 
For the purpose of our numerical calculation we 
use the following values different terms used in 
above model 
rc=3.3x10-4 cm rt=3.3x10-3cm b=1.6x102 cm 
v=0.02unit Dp=1.0x10-5 unit Dt=1.6x10-5unit 
Dh=1.4x10-7 unitap=1.53x10-9 unit 
Dm=5.0x10-7 unitCh=8.9x10-6unit Cm=2.7x10-7 unit
Uh=60 unit 
Uh’=2x1010unitQ=4.5x10-8unit at=1.3x10-9 unit 
 
 
 

5. AXIAL DIFFUSION 
 

On the basis of our results, we come to know that 
the axial diffusion term should not be neglected as 
many workers have neglected it in their solution of 
the governing equations. In tissue region, axial 
diffusion is nearly 15 times smaller than the redial 
diffusion and so should be avoided by equation 
(17) and (18). We can show the importance of 
axial diffusion. As the ratio ]1,0[)/( ∈LzLr  
increases axial diffusion term becomes large. 
Salathe et al [5] have also investigated boundary 
layers in region of the inflow boundary using 
matched asymptotic expansion.   
 
 
 

6. MYOGLOBIN 
 
On the basis of our results, we observed that on 
increasing consumption of oxygen, p is lowered; 
therefore we cannot neglect myoglobin because 
myoglobin plays an emergency storehouse of 
oxygen in case of deficiency of oxygen. 
 
 
 

7. BOUNDARY CONDITIONS 
 
We have come to know that the transport is 
convection dominated in the axial direction inside 
the capillary. This will be a small order diffusive 
flux of oxygen along the inflow tube and so the 
assumption p – pa for blood inflow geometry based 
is valid. In case of ant flew geometry we can 
assume diffusion is of neglecting order. 
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8. SYMBOLS USED IN MODEL 
 
R        Radial co-ordinate  
∆p        Diffusion coefficient of oxygen in plasma 
p         Oxygen partial pressure 
H        Fractional hemoglobin saturation  
Qp       Oxygen solubility in plasma    
∆t         Diffusion coefficient of oxygen in tissue 
Dp       Diffusion coefficient of hemoglobin 
Dm       Diffusion coefficient of myoglobin 
Ch       Oxygen carrying capacity of hemoglobin   
rc        Capillary radius 
Cm       Oxygen carrying capacity of myoglobin     
b          Length of capillary 
Uh       Backward reaction rate for oxy-hemoglobin 

reaction.  
rt          Tissue radius 
Um      Backward reaction rate for oxy-myoglobin 

reaction    
Qt         Oxygen solubility in tissue 
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