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Abstract   A resource investment problem is a project-scheduling problem in which the 
availability levels of the resources are considered as decision variables and the goal is to 
find a schedule, and resource requirement levels, such that some objective function 
optimizes. In this paper, we consider a resource investment problem in which the goal is to 
maximize the net present value of the project cash flows. We call this problem as Resource 
Investment Problem with Discounted Cash Flows (RIPDCF) and we develop a heuristic 
method to solve it. Results of several numerical examples show that the proposed method 
performs relatively well. 
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مسئله سرمايه گذاری در منابع يک حالت خاص از مسائل زمانبندی پروژه هاست که در آن سطوح در    : چكيده

ع به عنوان متغيرهای تصميم در نظر گرفته می شوند و هدف يافتن يک زمانبندی برای انجام دسترس مناب
در اين مقاله مسئله . فعاليت ها و همينطور تعيين سطوح به کارگيری منابع طوری است که تابع هدف بهينه شود

 ه معرفی و بررسی سرمايه گذاری در منابع با هدف بيشينه سازی ارزش خالص فعلی جريان های نقدی پروژ
نتايج آزمون های متفاوت نشان می دهد که . می شود و يک روش ابتکاری برای حل آن پيشنهاد خواهد شد

 .روش پيشنهادی نسبتا خوب عمل می کند
 
 
 

1. INTRODUCTION AND LITERATURE 
REVIEW 

 
Project Scheduling Problem (PSP) is an 
investigatory area in the operations research and 
management science field. PSP involves finding a 
schedule for activities of a project subject to some 
side constraints such as precedent constraints, 
resource constraints, etc. 
Many researchers have considered different 
variations of this problem in the past decades. 

Tavares [1] classified the PSPs based upon three 
factors, namely, Activities, Resources, and 
Criteria. From the activities point of view, he 
categorized PSPs based on the types of the 
precedent relations between activities. In this case, 
he considered single-mode or multi-mode activity 
execution, possibility of preemption, and 
deterministic or stochastic durations. From the 
resources point of view, he classified PSPs based 
on existence or absence of resource constraints, 
resource types used in the project (for example 
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renewable resource or non-renewable resource) 
and the availability level of resources to be input 
parameters or decision variables. From the criteria 
point of view, he categorized PSPs based on the 
types of objective function employed. In this case, 
for example, minimization of the project duration, 
maximization of the net present value of the 
project cash flows, maximization of the project 
resource utilizations, or minimization of the project 
total costs introduces different PSPs. Any 
combination of the above viewpoints initiates 
different project scheduling problems. For a 
comprehensive survey of project scheduling 
problems refer to Brucker et al [2]. 
In this paper, we are considering a class of PSP in 
which the resources do exist and their availability 
levels are decision variables. In the literature, 
researchers call this problem as Resource 
Investment Problem (RIP). In RIP, we are 
concerned about completing a project which 
consists of a set of activities, such that a given 
deadline is met in time and a set of resources 
needed for the execution of the activities over the 
project is utilized. Since costs incur to provide 
resources, the aim is to find a schedule and 
resource requirement levels such that the objective 
function optimizes.  
In the researches that undertook this problem so 
far, the objective function has been cost 
minimization. Mohring [3] introduced RIP and 
proved that this was NP-Hard. Also, he has 
proposed an exact solution method based on graph 
algorithms and solved some examples with 16 
activities and four resources by his method. 
Demeulemeester [4] presented another exact 
algorithm for a RIP named Resource Availability 
Cost Problem. Akpan [5] proposed a heuristic 
procedure to solve RIP. Drexl and Kimms [6] 
presented lower and upper bounds for RIP using 
Lagrangian relaxation and column generation 
techniques. Shadrokh and Kianfar [7] developed a 
genetic algorithm to solve this problem and 
examined its performance through some test 
problems.  
As an extension of the RIP research we encounter 
the RIP/max problem in the literature. In this 
problem the precedence constraints of RIP extends 
to temporal constraints where the minimum and 
the maximum time lags between the start of 
activities have to be observed in order to solve this 

problem. Zimmermann and Engelhard [8] 
developed a time-window based branch-and-bound 
algorithm enumerating integral start times of 
activities. Nübel [9] proposed a procedure for 
RIP/max based on the consideration of fictitious 
resource capacities and the resolution of resulting 
resource conflicts. Nübel [10] introduced a 
generalization of RIP/max and developed a depth-
first branch and bound procedure to solve it. 
Many of the recent research of project scheduling 
focus on maximizing the NPV of the project using 
the sum of positive and negative discounted cash 
flows throughout the life cycle of the project. It has 
been shown [11], for example, that a project in 
which progress payments are involved and which 
is scheduled optimally to minimize project 
duration may not yield the highest NPV or 
financial return to the firm. Russell [12] introduced 
the problem of the maximizing NPV in the absence 
of resource constraints. He proposed a successive 
approximation approach to solve the problem. 
Grin-old [13] added a project deadline to the model 
and formulated the problem as a linear 
programming problem and proposed a method to 
solve it. Doersch and Patterson [11] presented a 
zero-one integer programming model of the NPV 
problem. Their model included a constraint on 
capital expenditure of the activities in the project, 
while the available capital increased as progress 
payments were made. Bey et. Al. [14] considered 
the implications of a bonus/penalty structure on 
optimal project schedules for the NPV problem. 
Russell [15] considered the resource-constrained 
NPV maximization problem. He introduced 
priority rules for selecting activities for resource 
assignment based upon information derived from 
the optimal solution to the unconstrained problem. 
Smith-Daniels and Smith-Daniels [16] extend the 
Doersch and Patterson Zero-one formulation to 
accommodate material management costs. Icmeli 
and Erengus [17]  
introduced a branch and bound procedure to solve 
the resource constrained project scheduling 
problem with discounted cash flows. In addition to 
the above researches, there are other related studies 
to the NPV maximization of a project: (see for 
example Elmaghraby and Herroelen [18], 
Demeulemeester et al[19], Sepil and Kazaz [20], 
Smith-Daniels[21], Baroum [22], , Yang et al[23], 
Smith-Daniels and Aquilano[24], Baroum and 
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Patterson[25], Padman and Patterson[26], Padman 
et al[27], Ulusoy and Ozdmar[28], Padman and 
Smith-Daniels[29], Sepil and Ortac[30], Erengus 
et.al. [31], Ulusoy and Sivrikaya [32], Dayanand 
and Padman [33], Pinder and Marucheck [34])  
To summarize, one can categorize the 
characteristics of the RIP model in the reviewed 
researches so far as: 
● The objective function is cost minimization of 
the resource utilizations 
● No payments made for the project during its life 
cycle 
● They do not involve the concept of time-value-
of-money in resource utilizations 
● There is no mention on the providing and the 
expulsion times of the resources 
Considering the fact the in real-world projects, the 
time-value-of-money of not only the resource 
utilization, but also the payments made for the 
project is very important for a project manager, in 
this research, we consider a RIP in which the goal 
is to maximize the Net Present Value (NPV) of the 
project cash flows, the cash flows being the project 
costs and the payments made for the project during 
the life cycle of the project. In this regard, we see 
that both the payments and the providing and 
expulsion times of the resources are considered. 
We call this problem a Resource Investment 
Problem with Discounted Cash Flows (RIPDCF). 
In section two, we define the problem precisely. 
Then in section three, we formulate the problem 
and prove it be NP-hard. In section four, we 
propose a heuristic solution to the problem. In 
order to understand the proposed solution better we 
provide a numerical example in section five. We 
measure the performance of the proposed method 
in section six, and finally the conclusion comes in 
section seven.  

 
 
 

2. PROBLEM DEFINITION 
 
An exact definition of the RIPDCF problem 
investigated in this paper is as follows: A project is 
given with a set of N activities indexed from 1 to 
N. Activities 1 and N are dummies that represent 
the start and completion of the project, 
respectively. The activities executions need K 

types of renewable resources. There are no 
available resources at the initial of the project, so it 
is necessary to provide the required levels of the 
resources at the activity execution time. In 
addition, the expulsion time of each resource type 
must be provided deterministically. Between the 
providing and the expulsion time of each resource 
type, availability level of the resource is equal to 
the provided level of the resource.  
Zero-lag finish-to-start precedent constraints are 
imposed on the sequencing of the activities. For 
each activity i, the precedent activity set is denoted 
as P(i).  A duration Di is given where activity i is 
started and it runs Di time without preemption. 
Activity i uses rik units per period for resource k. 
 The resource usage over an activity is taken to be 
uniform.  A cost of Ck is associated to use one unit 
of resource k per period of time. In addition to 
resource usage cost, each activity has some other 
costs such as material or overhead costs. We call 
these fixed costs. Fixed costs occur over activity 
execution and their amount at period t for activity i 
is denoted by Fit. Payments are received at 
payment points g∈G, where G is the set of 
payment points. Payment g occurs when a set of 
activities PB(g) ends, and its amount is equal to 
Mg. The activities are to be scheduled such that the 
make span of the project does not exceed a given 
due date (DD). Also, α is the discount rate.  
 
 
 

3. PROBLEM FORMULATION 
 

To formulate the problem, let us define the 
decision variables as: 
Si    : Starting time of activity i,                                         
i=1,2,…,N 
Tg   : Occurrence time for payment g,                               
g=1,2,…,G 
Rk   : Required level of resource k to be provided,           
k=1,2,…,K 
SRk : providing time of resource k,                                  
k=1,2,…,K 
FRk : expulsion time of resource k,                                 
k=1,2,…,K 
Xit : A binary variable where it is if activity i is 
started at period t and zero otherwise,  i=1,2,…,N      
and    t=0,1,…,DD 
We can now formulate the RIPDCF as follows: 
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Where, ESi is the earliest start of activity I, LSi is 
the latest start of activity i, PR(k) is an  activity set 
that uses resource k and has no precedence, and 
UR(k) is an activity set that use resource k and has 
no successor. 
The objective function (1) maximizes the net 
present value of the project. It includes positive 
effects of the present values of the payments, 
negative effects of the present values of the fixed 
costs and negative effects of the present values of 
the costs for providing the resources. Equation (3) 
enforces the precedent relations between activities. 
Constraint (4) ensures that the project ends by the 
latest allowable completion time. Equation (5) 
guarantees that payments occur when required 
activities have been finished. Constraints (6) and 
(7) correspond to the providing and the expulsion 
times of the resources. Equation (8) ensures that 

the provided resource units are sufficient to 
implement the schedule. Equation (9) states that 
every activity must be started only once. Equation 
(10) states the relationship between variables Sj 
and variables Xit. Sets of constraints (11), (12), 
(13), (14) and (15) denote the domain of the 
variables. 
One can convert the RIPDCF to RIP with some 
simplifications. For example, if we eliminate the 
constraints (5), (6), (7), and (14) and reduce the 
non-linear objective function to a linear one, where 
the aim is to minimize the make-span of the 
project, then a RIP could be reached. Mohring 
proved that RIP is NP-hard [3]. Since the RIPDCF 
is convertible to RIP with some simplification, 
then RIPDCF in also NP-hard. 

 
 
 

4. A SOLUTION PROCEDURE 
 

In this section, based on the priority rules of the 
RIPDCF we propose a heuristic method to solve 
the problem. To do this, first we state some 
definitions that are required in the procedure. 
  
Definition 1:  
Negative cash flow of an activity: Includes 
discounted cash flow of the resource usage cost 
and fixed cost at the activity starting time. It can be 
stated as: 
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Definition 2:  
Positive cash flow of an activity: If the precedent 
activity set of payment occurrence contains only 
one activity, then we set a positive cash flow of the 
activity to be equal to the discounted cash flow of 
that payment at the activity starting time. In this 
case, we define the positive cash flow of the 
activity as: 

id
gi eMCF α−+ =                                                    (17) 

If the precedent activity set of payment occurrence 
contains more than one activity, then we create a 
dummy activity and set the positive cash flow of 
the dummy activity to be equal to that payment. In 
this case, the number of the project activities may 
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increase to M. In the following sections we denote 
the number of activities by M.  
 
Definition 3:  
Cash flow of an activity: Cash flow of an activity 
equals to the sum of the negative and the positive 
cash flows of an activity. In other words, we have: 

+− += iii CFCFCF                                                (18) 
 
Definition 4:  
The amount of non-usage resource at a period: 
With equation (8) modified, the amount of non-
usage resource k at a period t, Wkt , can be obtained 
by:  
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Now, we simplify the problem formulation in the 
following form: 
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Subject to Equations (3), (4), (6), (7), (19), (9), 
(10), (11), (12), (13), (14) and (20). 
In order to develop the solution procedure, we use 
the double structure of the objective function given 
in (21). The double structure includes positive 

roles of the activities cash flow, ( iS
M

i
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Now we are ready to describe the executive steps 
of the proposed algorithm as follows: 
Step1: Let problem P be the RIPDCF that we are 
interested to solve and Psub be a problem obtained 
by removing resources of the P problem. 
Therefore, the Psub problem can be reached from 
the P problem by removing resource constraints 
and negative roles of non-usage resource costs in 
objective function. The Psub problem can be 
described as follows: 
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Subject to Equations (3), (4), and (11). 
The Psub problem is a project scheduling problem 
with discounted cash flows and can be solved 
exactly [12]. Call the acquired problem as Active 
Problem, solve it by related methods, and obtain 
the optimum value of its objective function. Call 
the optimum solution as active scheduling. Now, 
enter the resource at active scheduling and 
determine the maximum of usage level for each 
type of resources. If we set the required level of 
each provided resource equal to the maximum of 
usage level of the resources, then the active 
scheduling is a feasible solution for the P problem 
and you can obtain the providing and expulsion 
time of each resource and obtain the discounted 
non-usage cost of each resource from the following 
equation: 
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Determine the objective function value of the 
master problem at this solution by the following 
expression and call it the active objective function 
value. 

∑
=
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K
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Step 2: Add all resources in a set, named resource 
candidate list. 
 
Step 3: From the list of resource candidates, select 
the resource with the highest discounted cost of 
non-usage (Uk). 
If the providing level of the selected resource has 
not reached its lower bound, decrease its value by 
one unit, solve the active problem by adding the 
resource constraint with the acquired value, and 
determine the optimum value of the objective 
function [17,25 &34]. In the acquired solution, 
consider the maximum of the usage level of each 
resource as a providing level. Then calculate the 
discounted non-usage cost for each type of 
resource and determine the objective function 
value of the P problem by Equation (24). Call it the 
temporary objective function value. However, if 
the providing resource value reached its lower 
bound, go to step five. You can obtain the lower 
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bound of the resource using the following 
expression: 
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Step 4: If the temporary objective function value is 
more than the active objective function value and 
the project is finished before its deadline, add the 
selected constraint to the active problem. Then, 
consider the acquired problem, related scheduling, 
and the temporary objective function value as an 
active problem and go to step three. Otherwise, do 
not add the selected resource constraint to the 
active problem. 
 
Step 5: Eliminate the selected resource from the 
resource candidate list and go to step six. 
 
Step 6: If the resource candidate list is empty, 
stop. The active schedule is the solution of the 
proposed algorithm. Otherwise, go to step three. 
 
 
 

5. A NUMERICAL EXAMPLE 
 

In order to illustrate the proposed method, consider 
a project network with eight activities and three 

resources. Figure 1 shows the activity-on-node 
representation of the network with the node 
numbers denoting the activity numbers. We define 
activity 1 and 8 to be dummies. Table 1 presents 
the durations, the resource requirements, and the 
fixed costs of the activities. The providing costs of 
the resources per period of time are 3, 2, and 4 
respectively. The deadline is 8 and the discount 
rate is taken to be 0.01 per period. There are three 
payments as follows: 40 after the end of activity 2, 
20 when activity 4 finishes, and 90 after the end of 
activity 7. 
 
 
 
 
 
 
 
 
 
 
Figure 1: The Project Network of the Example Problem 

 
In order to solve this problem, first we calculate 
the cash flows of the activities by equations (16), 
(17) and (18), as shown in Table 2. 

 

1

2 3

4 5

6

7 8

 
Table 1: Activity Data of the Example Problem 

 
Fixed costs Resource requirements 

Fi2 Fi1 ri3 ri2 ri1 

Duration 

(di) 

Activity 

(i) 

- - 0 0 0 0 1 

5 5 1 0 2 2 2 

1 3 0 2 1 2 3 

- 5 1 1 0 1 4 

9 13 1 2 1 2 5 

1 1 2 0 1 2 6 

- 6 1 1 0 1 7 

- - 0 0 0 0 8 
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Figure2: The Active Schedule (Stage 1) 

 
 
ow, we follow the steps in the proposed procedure. 
According to step 1, we solve the problem without 
considering the resources. We call the 
corresponding problem an active problem and 

define its solution as an active schedule. Figure 2 
shows the active schedule of the problem. 
For this schedule the value of the objective 
function, Zsub, is 37.7. Then, we obtain the 
requirement level, the providing and expulsion 
time of each resource. In addition, we calculate the 
discounted costs of the non-usages by equation 
(23). Table 3 shows the results. 
From equation (24), we obtain the objective 
function value of the master problem at this 
solution (active objective function value (Z)) as -
19.4. Now, according to step 2 of the procedure, 
the list of the resource candidates contains all three 
resources. In step 3, since the discounted cost of 
non-usage of resource 3 is the highest, we select 
resource 3.  Furthermore, since the providing level 
of resource 3 has not reached its lower bound, we 
decrease its requirement level to 2. Then, we solve 
the active problem with the resource 3 added as a 
constraint. Figure 3 shows the solution. 

 
Table 2: Activity Cash Flows of the Example Problem 

 
Cash flow 

(CFi) 

Positive cash flow 

(CF+
i) 

Negative cash flow 

(CF-
i) 

Activity 

(i) 

0 0 0 1 

20 40 -20 2 

-20 0 -20 3 

10 20 -10 4 

-40 0 -40 5 

-10 0 -10 6 

80 90 -10 7 

0 0 0 8 

 

Activity
1
2
3
4
5
6
7
8

Time0       1         2        3        4        5        6
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For this solution, Zsub is 37.4. Then, we obtain the 
resource plan again according to the schedule. 
Table 4 shows the results.  
In this solution, we obtain the objective function 
value of the master problem as 19.9. Since the 
objective function value of this solution is more 
than the active objective function value and the 
project finishes before its deadline, according to 
step four of the algorithm we add the mentioned 
constraint to the active problem.  Furthermore, the 
active schedule is now changed and is shown in 
Figure 3.  
Now from the candidate list we select resource 3 in 
step three because of its highest non-usage cost 
(7.8). However, its lower bound is equal to its  
requirement level (2) and we cannot decrease it. 
Therefore, we eliminate this resource from the 
candidate list, select resource 1, and decrease its 
level to two. Then, we solve the active problem by  
adding resource 1 as a constraint. Figure 4 shows 
the schedule. 
For this solution, Zsub is 37.4. Then, we obtain the 
resource plan again according to the schedule. 
Table 4 shows the results.  
In this solution, we obtain the objective function 
value of the master problem as 19.9. Since the 
objective function value of this solution is more 
than the active objective function value and the 
project finishes before its deadline, according to 
step four of the algorithm we add the mentioned 

constraint to the active problem.  Furthermore, the 
active schedule is now changed and is shown in 
Figure 3. Now from the candidate list we select 
resource 3 in step three because of its highest non-
usage cost (7.8). However, its lower bound is equal 
to its requirement level (2) and we cannot decrease  
it. Therefore, we eliminate this resource from the 
candidate list, select resource 1, and decrease its 
level to two. Then, we solve the active problem by 
adding resource 1 as a constraint. Figure 4 shows 
the schedule. 
We obtain the objective function value of the 
master problem as 12.4 for this schedule. Since it 
is less than the active objective function value, 
according to step four, we go  

Figure 3: The Project Schedule (Stage 2) 
 

Table 3: The Resource Plan of the Active Schedule (Stage 1) 
 

Resource No. (k) Requirement Level 
(Rk) 

Providing Time 
(SRk) 

Expulsion Time 
(FRk) 

Discounted Cost of 
Non-Usage (Uk) 

1 3 0 5 14.6 
2 4 2 6 11.6 
3 3 0 6 30.9 

 

Activity
1
2
3
4
5
6
7
8

Time0       1         2        3        4        5        6

Table 4: The Resource Plan of the Schedule (Stage 2) 
 

Resource No. (k) Requirement Level 
(Rk) 

Providing Time 
(SRk) 

Expulsion Time 
(FRk) 

Discounted Cost of 
Non-Usage (Uk) 

1 3 1 5 5.8 
2 2 0 6 3.9 
3 2 0 6 7.8 
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Figure 4: The Project Schedule (Stage 3) 
 
 
to step five and we ignore the constraint of 
resource 1 and eliminate this resource from the 
candidates list. Since the candidate list is not 
empty we go to step three. The candidates list now 
contains resource 2 only. However, its lower 
bound is equal to 2 and cannot be decreased. 
Hence, we eliminate this resource from the 
candidate list according to step five. Now, the 
candidate list becomes empty and the procedure 
terminates in step six. The current active schedule 
shown in Figure 3 is the solution of the proposed 
algorithm for the given RIPDCF problem 
 
 
 

6. THE PERFORMANCE OF THE 
PROPOSED PROCEDURE 

 
In this section, we present the performance of the 
proposed procedure introduced in the previous 
sections. To do this, first, we generate some test 
problems and then we present the computational 
results of the proposed method applied to the test 
problems. 
 

6.1. The Test Problems 
Since the RIPDCF is a newly defined problem, we 
cannot find any standard test problems to examine 
the performance of the proposed procedure 
introduced in this paper. Therefore, we generate a 
set of 220 test problems containing different 
instances using ProGen software package [35]. 
ProGen is an instance generator for a broad class 
of resource-constrained project scheduling problem 
by varying three factors: network complexity, 
resource factor, and resource strength. The network 
complexity reflects the average number of 
immediate successors of an activity. The resource 
factor is a measure of the average number of 
resources requested per activity. The resource 
strength describes the scarceness of the resource 
capacities. These factors are known to have a big 
impact on the hardness of a project instance [35].  
Although the Progen software is not capable of 
creating some instances of the RIPDCF problem, 
we develop our own instance generator program in 
the following manner: 
1. We consider the project deadline (DD) being a 
random variable uniformly distributed between 
1.2*ETP and 1.6*ETP, where ETP is the earliest 
finish time of the project, and we generate its 
sample values accordingly.  
2. The providing costs of resources (Ck’s) are set 
equal to the resource availability levels generated 
by ProGen. 
3. The fixed cost of activity i in period t, (Fit), is 
calculated by the ratio of the resource costs of the 
activity and is generated from uniform distribution 
on [0, 0.3*RCAi], where RCAi is obtained from the 
following equation: 
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Table 5: Resource Plan for Schedule (Stage3) 

 
Resource No. (k) Requirement Level 

(Rk) 
Providing Time (SRk) 

Expulsion Time 
(FRk) 

Discounted Cost of 
Non-Usage (Uk) 

1 2 1 6 5.7 
2 2 0 7 3.8 
3 2 0 7 15.4 

 

Activity
1
2
3
4
5
6
7
8

Time0       1         2        3        4        5        6        7
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4. In order to generate the payment values, first, we 
deterministically select the terminal activity and 
randomly select the other activities based on a 
uniform distribution on the interval (0.2, 0.5). Then 
we randomly distribute a multiple (uniformly 
distributed in the interval (1.5, 2.5)) of the total 
activity costs to the selected activities.  
We implement the proposed method to different 
scenarios generated based on the above instance 
generator. In these scenarios, we consider the 
number of activities in the network to be less than 
10, 10, 15, 20, 30, and 60, the number of resources 
to be 3, 4, or 5, the network complexity to be 1.5, 
and the resource factor and the resource strength to 
be 1 and 0.2, respectively. Activity durations and 
resource requirements are integer values out of [1, 
10] uniformly distributed. We set the discount rate 
to be equal to 0.01, 0.015, and 0.02.  We apply the 
method to 220 instances by the instance generator 
described above. 
 
6.2. The Computational Results 
In this section, we report the results obtained by 
examining the proposed procedure to the generated 
test problems. To do this, first, we coded a Matlab 
computer program of the procedure, and then we 
employed the program on the test problems. To 
evaluate the performance of the procedure we 
needed some good solutions. Since there was no 
other existing procedure to solve the RIPDCF 
problem, we solved the mathematical modeling of 
the test problems with solver software (LINGO). 
However due to the nature of the problem, LINGO 
[36] was unable to obtain a global optimal solution 
for all the test problems. In these cases, we 
assumed that the solution obtained by LINGO was 
a good one to compare with.  We performed the 
experiments on a PC with a Pentium 1800 
processor and 64 MB RAM, limiting the solution 

time less than or equal to 3600 CPU seconds. 
Table 6 contains a summary of the computational 
results.  
We define the columns of table 6 as follows: 
A: Number of problems in which LINGO was able 
to find a solution  
B: Number of problems in which the proposed 
procedure found a solution  
C: Average of the relative deviation percentages 
for instances solved by LINGO, where a relative 
deviation percentage is obtained by equation (26). 

 
Objective Function Value in LINGO – Objective 

Function Value in the Proposed Procedure 
_______________________________________ 

 
Objective Function Value in LINGO 

 
D: Maximum of the relative deviation percentages 
for instances solved by LINGO, where a relative 
deviation percentage is obtained by equation (26). 
E: Average CPU time (in seconds) required to 
obtain the solutions by LINGO 
F: Average CPU time (in seconds) required to 
obtain the solutions by the proposed method. 
The results of Table (6) show that 
a. There are many instances that the solver 
software is unable to solve, but there is a solution 
by the proposed method. 
b. The relative deviation percentages for the 
instances solved by LINGO are not high. It means 
that there is no significant difference between the 
solutions obtained by LINGO and the ones 
obtained by the proposed method. 
c. While actually there is no difference between the 
solutions obtained by LINGO and the proposed 
method, the amount of CPU time for the proposed 
method is much less than that of those obtained by 
LINGO. 

 
Table 6: Computational Results 

 
No. of 

Activities 
No. of 

Problems A B C D E F 

<10 40 30 40 1.2% 3.0% 902 <1 
10 40 24 40 1.3% 3.2% 1135 <1 
15 40 18 40 1.5% 3.6% 1820 <1 
20 40 12 40 1.7% 3.7% 2455 2 
30 30 5 30 1.9% 3.9% 3205 2 
60 30 0 30 - - - 3 
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7. CONCLUSIONS AND 
RECOMMENDATIONS FOR FUTURE 

RESEARCH 
 

In this paper, we introduced a new resource 
investment problem in which the goal was to 
maximize the discounted cash flows of the project 
payments. We mathematically formulated the 
problem and showed that it is a Np-hard problem. 
In order to solve the problem we came up with a 
heuristic approach and through some generated test 
problems, we showed that it works relatively well.  
Some extensions of this research might be of 
interest. While in this paper we only considered the 
"payments at pre-specified event nodes", some 
other payment models such as progress payments 
and payments at pre-specified time points may be 
considered in the project. The other extension of 
this research would be to investigate a RIP/max 
problem in which the goal is to maximize the NPV 
of the project. One of the other potential interests 
would be to develop some meta-heuristics 
methods, such as genetic algorithm, simulated 
annealing, neural networks, ant ant-colony 
algorithm, etc., to solve the RIPDCF problem. 
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