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Abstract   The purpose of this paper is to analyze the effect of a particular control doctrine applied 
to the service mechanism of a queuing process with lapse. It is assumed that the service discipline is 
FCFS (first come, first served), arrival process is Poisson, service time distribution is exponential, 
service process is one phase and the capacity is infinite. It is also assumed that the customer may give 
up joining the system when the queue is overcrowded. Expressions are obtained for queue length 
probabilities for describing control performance. The aim of which is to decrease customer’s 
expectancy time via incorporation of a service cost structure. The model is executed by two control 
methods, namely the single level control and double level hysteretic control. Finally, the results are 
compared with each other through solving a numerical example. 
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  در اين محيط فرض. اين مقاله در زمينه كنترل نرخ بهينه سرويس دهي در يك محيط بانكي است   چكيده
 است و مشتريان طي يك مرحله سرويس دهي FCFS (First Come, First Served)كه نظام سرويس  شود مي
عني وقتي صف خورد، ي ظرفيت بانك نامحدود است و مسئله انصراف به چشم ميدر اين حالت  .شوند مي

 اين مقاله، طرح يك سيستم در.  ممكن است مراجعين دلسرد شوند و مايل نباشند منتظر بمانندباشدطولاني 
    تعديل زمان انتظار متقاضي بر حسب ساختار ذاتي اين است كهو هدفشود  بهينه ارائه ميسرويس دهي 

باجه هاي فعال و تعيين بهينه اي تعيين تعداد توان بر  با بدست آوردن هزينه انتظار مي. صورت پذيردهزينه ها
براي انجام اين طرح، از دو مدل تك . ي كه اين باجه ها بايد بر اساس آن راه اندازي شوند استفاده كرديها نرخ

  با يكديگر مقايسه  حداقل هزينه بدست آيدبنحوي كهشود و سپس  استفاده مي سطحي و تشنجي دو سطحي
براي ،  به زبان پاسكال نوشته شده كهبرنامه كامپيوترياز محاسبات،  و زمان دن حجمعلت بزرگ شه  ب.دنشو مي

 .رديگ مياين منظور مورد استفاده قرار 
 
 

1. INTRODUCTION 
 
One of the inevitable facts of life is waiting in 
queues that may take up an important part of daily 
routine time. Unfortunately, the importance of this 

phenomenon is growing with increasing the 
population, causing waste of time, energy, and 
money. Although we can never get rid of queues, 
we can alleviate its advance effects as much as 
possible. The queuing theory tries to reduce the 
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waiting time in queue, based on an extensive 
mathematical analysis. 
     The queuing theory was first developed to cope 
with the overcrowding of the telecommunication 
systems. The first researcher in this area was 
the Danish mathematician Erlang, who developed 
a probabilistic theory using in telephone conversations.  
There are many important applications of this 
theory, which are appeared in articles related to 
probability, operations research, and management 
sciences [1,2]. 
     Since banking systems have been of interest for 
a long time and banks have always been in 
competition, special issues such as reduction 
waiting time and quickness in providing services 
have been subjects of research. The results of 
which could he used in determining optimum 
rate of service-provision, number of the service 
providers to decrease service times with the least 
possible amount of costs. By determining the 
above factors, one can set down a strategic plan for 
the success of each bank in various dimensions. 
Along this line, some of the goals would he as 
follows: 
 
1- Number of the tellers to be employed in this 

bank. 
2- The smallest and the largest number of 

customers in the queue, on the basic of which 
the service rate is changed. 

3- Minimizing service and waiting costs. 
 
     In general, models are divided in two kinds: 
descriptive and operational [1,2]. Descriptive 
models are those that explain the present situation, 
while the operational models provide an optimum 
behavior of the existing system. Various papers 
have been presented on this subject. 
     Hillier and Lieberman [1] believed that if 
the number of the tellers at a service box is 
proportionate to service rate, it is better to have one 
big cluster of tellers (M/M/1), in which the number 
of tellers is corresponding to µ* instead of many 
small clusters of tellers. Of course this is true when 
the assumption of linearity cost function holds true. 
One of the works carried out by Stidham [3] 
proved the queuing formula L = λ×W, and its final 
result which is being used in most optimization 
models of the queuing systems. Crabill [4] 
developed various models such as static design 

models and dynamic control models. Yadin and 
Naor [5] stated that the service rate can be brought 
under control of the decision maker at any time. 
     Gebhardt [6] investigated two special methods 
to determine the optimum service rate, assuming 
Poisson arrival and exponential service. Sobel [7] 
investigated some policies to start and stop the 
service in a queuing system that affects the service 
profit. Tembe and Welff [8] investigated the 
optimum control of service-provision in 
consequent queues. One of the most recent works 
on the group entrance (arrival) and exist by group 
in queuing networks belong to Chao [9]. Crabill 
[10] presented a paper on the control of service-
provision assuming exponential service time and 
fixed entrance rate. Tijms [11] proposed a policy 
for a priority-oriented queuing when the service 
provider can be removed. 
 
 
 

2. CREATING A QUEUING SYSTEM 
 
Let a system for servicing exist and customers 
refer for receiving service. If server is idle, the 
customer will receive his service immediately, but 
if server is not idle the customer enters in the 
queue. The way of creating a queue system has 
been illustrated in Figure 1. The elements of a 
queuing system are listed below: 
 
• model of entering customer (A), 
• model of servicing (B), 
• number of servers (X), 
• queue’s capacity (Y),  
• system array (Z). 

 
 

 
Servers XXXX

Queue

 
 
 
 

Figure 1. Queuing system with lapse. 
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     In Markovian queues, the time is divided into 
three periods of “past”, ”present” and “future”, in 
which the future is independent of the path it has 
taken in the “past”. It only depends on its situation 
at the “present” [1, 16]. The size of each queuing 
system can increase (by birth), or decrease (by 
death) at any moment. In a queuing system, the 
customers represent the above population. In this 
system, the entrance follows a Poisson process 
with parameter λn, and the service follows another 
Poisson process with parameter µn. The time 
interval between two births or two deaths follows 
an exponential distribution. If we consider the 
entrance of a particular customer into the system as 
a birth and his/her exit as a death, then we will 
have a birth-death process. In this case, the 
transition rate is shown in Figure 2. The transition 
rate of the birth-death model shows that each state 
is related to its previous and latter states and 
consequently the following relations hold: 
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3. MATHEMATICAL MODEL 
 
Gebhardt [6] investigated a simple M/M/1 queuing 
system with state-dependent service, in which the 
arrival process to the system is Poisson and the 
service time follows an exponential distribution. 

He considers two models, namely single level 
control and double level hysteretic control. In the 
single level control model, the service rate is 
assumed to be equal µ1, and it is used while the 
queue length is less than or equal N1. Otherwise, 
the service rate is increased to k1 × µ1, where k1 is 
the number of servers. 
     In the double level hysteretic model, two 
service rates are considered. As long as the queue 
length is equal or less than N1, the service rate µ1is 
used. With increasing the queue length from N1 to 
N2, the service rate is also increased from µ1 to k1 × 
µ1. It means that the number of servers is increased 
by k1-1 servers. When the queue length goes back 
to N1, then the service rate also returns to µ1. In 
fact, the extra servers are removed from the 
process. One can talk about the existence of a 
control loop. 
     Using the above analysis and birth-death 
process, Gebhardt investigated an efficient method 
to compute P0 (the probability that there is no 
customer in the system) and the other queue length 
probabilities. The corresponding formulas are 
shown below. In these formulas λ is the arrival 
rate, n is the length of queue, k1 is the number of 
servers, ρ is the ratio of λ to µ1 and ρ1 is the ratio of 
ρ to k1. P is also defined as N2-N1 = P+1. 
In the single control level, we have: 
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Figure 2. Single level control. 
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expression: 
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     In the double level hysteretic control, we have 
the following equation. 
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 (4) 
 
Primes will be used on those 'P s that are not the 
total probabilities of the queue lengths having the 
subscript values. 
     Considering the set of Equations 4, it is found 
the following equation. 
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     Two appropriate criteria are suggested to 
measure the performance of double level hysteretic 
control. 
 
1- The average rate of switching from µ1 to k1 × µ1 

denoted by η. 
2- The proportion of the total time that the 

queuing system operates at the greater rate of 
the two service rates denoted by F. 

 
     The switching rate is the rate at which 
transitions occur from queue length N1-1 to N2 or 

from N1+1 to N1. It is found in the following 
equation. 
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     Equation 6 shows the change of mean rate from 
µ1 to k1 × µ1. F is equal to the probability of 
operating at the service rate k1 × µ1 and is found as 
follows: 
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     In this paper, the cost function is comprised of 
two components as Cs and Cq, which denote the 
service cost and the queuing cost, respectively. 
These costs are defined as follows: 
 

ηµµ 121111 )1( crFkcrcCs +−+=  (8) 
 
where c1 is a standard unit of cost. The cost of the 
additional servers and switching for the additional 
servers will be varied by r1 and r2 in the cost 
formula, respectively. 
     With c2 representing another standard unit of 
cost, Gebhardt proposed the following forms for 
Cq: 
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     Gebhardt goes on to find the cost function for 
different scenarios. Gebhardt then uses the sum of 
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Cs and Cq to find the strategy of minimum cost. 
 
 
 

4. THE PROPOSED MODEL 
 
The model suggested in this paper is a generalized 
from of the Gebhardt’s model [6], in which the 
lapse theory is also included in the model. It is 
assumed that the customer may give up entering 
the queue when the queue seems to be 
overcrowded. As a result, the arrival rate would be 
changing and for each state i, we have: 
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where bi is a descending function and is defined as: 
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     Considering λ as the arrival rate to the system, 
µ1 as the service rate and k1 as the number of 
servers in the system, we have: 
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     It should be noted that this queuing process is 
always stable, even if the values of ρ or ρ1 are 
greater than one, because of considering the lapse 
in the proposed model. 
 
4.1. Single Level Model   In this model, it is 
supposed that the service rate is equal to µ1 for the 
queue lengths less than or equal to N1 and k1 × µ1 
for the queue lengths greater than N1. Figure 2 
shows a single level control. According to Figure 
2, we have the following equation. 
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and then we can calculate P0 as follows: 
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Figure 3. Double level hysteretic control. 
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4.2. Double Level Hysteretic Control   In this 
model, it is assumed that the service time is 
distributed exponentially and the average rate will 
change between µ1 and k1 × µ1. 
     When the queue length increases from a value 
less than or equal to N1 to a value equal to or 
greater than N2, then k1 × µ1 rate is maintained until 
the queue length drops to the value N1<N2 at which 
time the k1 × µ1 rate decreases to µ1. Figure 3 shows 
a double level control. In this problem, we define 
N2 - N1=P+1. 
     We proceed in the analysis by first enumerating 
the states in the sequence ( 0, N1) with queue’s 
lengths from 0 till N1 and the average service 
rate µ1, (N1+1, N1+P) with queue’s lengths from 
N1+1 till N1+P and the average service rate µ, 
(N1+P+1, N1+2P+1) with queue’s lengths from 
N1+1 till N1+P+1 and the average service rate k1 

× µ1 and (N1+2P+1, ∞) for queue’s lengths 

greater than N2 and the average service rate k1 × 
µ1. 
 
4.2.1. Steady-State Equations for the States 
in the Sequence (0 , N1)   For the states from 0 to 
N1, we have the following equation. 
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4.2.2. Steady-State Equations for the States 
in the Sequence (N1+1, N1+P)   Figure 4 shows 
how to calculate P′N1+1. For calculating the 
state P′N1+P+1, we can proceed as shown in 
Figure 5. 
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Figure 4. Process in state N1+1. 
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Figure 5. Process in state N1+P+1. 
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As shown in Figure 3, each of the states from N1+2 
to N1+P is dependent on its former and latter ones. 
Since the rate of service is µ1, then each state can 
be calculated as follows: 
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4.2.3. Steady-State Equations for the States 
in the Sequence (N+P+, N+2P+)   As shown 
in Figure 6, one can reach to N1+P+1 only through 
the state N1+P+2, in which the queue length is 
N1+1. 
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     For the states from N1+P+3 to N1+2P+1, we can 
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Figure 6. Process in state N1+P+2. 
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proceed according to the set of Equations 20, 
expecting the queue length from N1+1 to N2 with 
service rate k1×µ1. 
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4.2.4. Steady-State Equations for the States 
in the Sequence (N1+2P +1,∞ )   Figure 7 
shows the state N1+2P+1 for calculating 

'P N1+2P+2. 
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     For calculating the probabilities from N1+2P+1 
to infinity, we can proceed similar to the Equations 
15 with this difference that the queue length is 
from N1+P+1 to infinity and the service rate is 

k1×µ1. 
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4.2.5. Combining the Equations to Obtain the 
State Probabilities   Equations 19 and 20 yield the 
following equations. 
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     By combining Equations 15 and 17, we have 
the following equations. 
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TABLE 1. Total Costs in Units of c (ρ = 2 and ρ1 = 0.5). 
 

Hysteretic Double Level 
N1 = 5, N2 = 7    N1 = 3, N2 = 7 

Single Level Hysteretic 
N1=0, N2=7 

 

Single Level 
N1 = 6, N2 = 7 

Simple 
ρ = 2         ρ1 = 0.5 

 

3.080 2.925 3.164 3.387 2.838 2.283 S1 

3.078 2.925 3.175 3.850 3.393 2.283 S2 

3.076 2.926 3.197 4.775 4.503 2.283 S3 

3.081 2.925 3.156 3.082 4.503 2.283 S4 
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 (25) 
We can find the set of Equations 26 by combining 
Equations 18 and 25. 
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 (26) 
 
     By summing '

0P s coefficients and investigating 
them, we can calculate the value P0. After 
obtaining P0, the other state probabilities, which 
are necessary to compute η and F from Equations 6 
and 7, can be easily obtained. 
 
 
 

5. COST STRUCTURE 
 
The choice of one queuing control method among 
several must be governed by an objective function. 
If a cost formula can be developed which fully 
accounts for the costs associated with the queuing 
system, then the calculated costs provide such an 
objective function. The total cost will be assumed 
to consist of a cost Cs associated with service and a 
cost Cq associated with the queue. 
     So as to limit the cost considerations to a 
reasonable length, no attempt will be made to 
derive optimum solutions because explicit 
optimization formulas are both difficult to obtain 
and become too complex for easy interpretation. 
Although for each particular cost formula the 
optimum can be obtained by developing parametric 
curves, the following treatment is sufficient to 
demonstrate that the optimum control method 
depends on the cost formula. The cost of service is 
similar to the Gebhardt’s cost of service (Equation 
8), with this difference that we have 
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The cost of queuing is considered as follows: 
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Cq is expressed the waiting time of a particular 
customer. Our main aim is to decrease the sum of 
the above-mentioned costs. 
 
 
 

6. NUMERICAL EXAMPLE 
 
For showing the numerical stability of the 
theoretical developments of the paper, we solve a 
numerical example. It is assumed that 22.2=λ  
per time unit and k1=1 or 4 according to whether 
one or four servers are employed. It is also 
assumed that the system can only operate at the 
average service rates of µ1=1.11 or 444 per time 
unit, corresponding to ρ=2 and ρ1=0.5, and to k1=1 
and 4. Moreover, we assume that c1=c2=c. As 
mentioned, the queuing process would be stable 
even without use of any control, because of 
considering the lapse theory in the proposed 
model. Taking into account the values of r1 and r2 
in the cost formula, four versions of formula S will 
be used as follows: 
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     Cs and Cq are computed from Equations 8 and 
29, respectively. Total costs (Cs+Cq) in units of c 
are tabulated in Table 1. 
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     The queuing control doctrine includes the 
simple control at each of the two permissible 
service rates, the single level control, the unilevel 
hysteretic control (N1 = 0) and the double level 
hysteretic control with two different settings on N1. 
As observed in the table, we find the simple 
control with ρ = 2 to be best in all cases. Results 
obtained by double level and unilevel hysteretic 
models show the smaller values comparing with 
the single level control. 
 
 
 

7. CONCLUSION 
 

In this paper, two models namely single level and 
double level hysteretic are investigated. It was 
proved that the total cost of the double level 
hysteretic model is smaller than the single level 
control. Hence, its use is suggested in service-
providence systems. 
     However, solutions obtained by the different 
models suggest that the simple control gives the 
most satisfactory results. The double level 
hysteretic, the unilevel hysteretic and the single 
level come as the second, third and fourth best, 
respectively. 
     Gebhardt [6] incorporated different coefficients 
in his work. He has concluded that the results 
obtained by the single level model are better if the 
cost of additional servers is smaller than the 
switching cost, when no lapse condition comes into 
action. However, if the cost of additional servers is 
greater than the cost of switching, then the double 

level model would be the best. 
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