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Abstract   An efficient formulation for the robust shape optimization of aerodynamic objects is 
introduced in this paper.  The formulation has three essential features. First, an Euler solver based on 
a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with 
binary number encoding is implemented for the optimization procedure. The third ingredient of the 
procedure is the use of previous flow that is closest in terms of geometric parameters to the new shape 
as an initial condition for the new function evaluation. This makes the solution towards the final value 
progressively faster and reduces the computer time for the convergence of the algorithm. The 
algorithm is used to optimize two different problems, a simple bump problem, and a two-dimensional 
transonic airfoil problem using an Euler solver equation. The results indicate that the GA/flow 
algorithm is robust and can optimize a wide range of problems with a minimum implementation 
effort. 
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   در اين مقاله روشی کارآ و فراگير برای بهينه سازی شکل هندسی اجسام آيروديناميک ارائه گرديده                      چکيدهچکيدهچکيدهچکيده
 برای حل مسئله     -۱.باشد يفرمولاسيون و کد تدوين شده برای اين منظور دارای سه خاصيت زير م                 .است

ين الگوريتم امکان پيش بينی     استفاده از ا  . حرکت سيال از فرمولاسيون مرتبه دوم گودونف استفاده شده است           
 کد توسعه يافته برای بهينه سازی، از الگوريتم           -۲. دقيق تر محل شوک را در جريان سيال فراهم می سازد             

 برای سرعت بخشيدن به همگرايی، کد از نتايج بدست آمده از حلهای              -۳. جويد ژنتيک با کد باينری بهره می     
سپس دو مسئله کاربردی به عنوان نمونه توسط الگوريتم . کند فاده می قبلی بعنوان شرايط اوليه در حل جاری است       

مسئله جريان سيال بر روی يک مانع قوسی شکل و جريان ترانسونيک بر روی يک ايرفويل                 : حل گرديده است  
NACA  تواند مسائل ديگر مربوط به بهينه       دهد که کد تدوين شده فراگير بوده و می         ينتايج نشان م  .  چهار رقمی

 .ی شکل هندسی اجسام آيروديناميک را با تغييرات جزئی حل نمايدساز
 
 

1. INTRODUCTION 
 
In the mid-70s, researchers [1-5] began exploring 
the use of numerical optimization techniques for 
the design of aircraft components. These early 
studies primarily focused on airfoil and wing design 
using low accurate fluid models for the analyses and 
finite difference calculations for gradient information. 
The inability of these fluid models to accurately 
predict nonlinear phenomena limited their 
applicability. Improvements in computational 
resources have been directed researchers into the 
use of higher fidelity Euler and Navier-Stokes 

equations in calculating flows around isolated 
components and moderately complex configurations. 
In mid 80s, Sobieski [6] challenged the aerodynamic 
community to extend their computational fluid 
dynamic (CFD) algorithms to include the shape 
sensitivity analysis of the geometry. This plea 
ignited intense studies aimed at developing 
methods that would render the use of nonlinear 
aerodynamics in shape optimization feasible. 
     Numerical techniques for optimizing performance 
in aerospace industries have been studied by many 
researchers over the years. Perhaps the most 
widely used are those based on the calculation of 
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the gradients. Reuther [7] presented a review 
of aerodynamic design using gradient methods. 
As the main theme of this paper is the use of 
genetic algorithm (GA) in aerodynamic design 
optimization, only a brief review of this approach 
is given here. 
     Quagliarella and Della Cioppa [8] used GA to 
optimize the airfoil utilizing potential-based flow 
solver. Vicini and Quagliarella [9] used GA for 
multi-point and multi-objective airfoil applications. 
Obayashi et al. [10] applied the algorithm for 
multi-disciplinary optimization of transonic wings. 
Examples of multi-design point wing optimization 
using Euler and Navier-Stokes flow solvers can be 
found in papers by Sasaki et al. [11] and Oyama 
[12-13]. 
     Holst and Pulliam [14] proposed a method for 
aerodynamic shape optimization of airfoils and 
transonic wing using a real number encoding genetic 
algorithm. For the airfoil they used an Euler 
equation solver while a nonlinear potential solver 
was used for the transonic wing optimization.  
     A drawback of the GA approach is mainly its 
expense. In general, the number of function 
evaluation required for a GA algorithm exceeds the 
number required by a finite-difference-based 
gradient optimization [15,16]. Recently, Doorly et 
al [17-19] applied a parallel genetic algorithm for 
aerodynamic design optimization. They applied the 
method to a 2D wing section and discussed the 
advantage of the method over the sequential 
genetic algorithm. 
     In this paper a progressive optimization was used 
for design of 2D airfoil section using sequential 
genetic algorithm. An Euler solver based on a 
second-order Godunov scheme is used for the flow 
calculations. Using information from the previous 
runs as initial conditions for the new design 
parameters increased the computational efficiency 
by a factor of five. 
     In the next sections, first the flow solver will 
explain briefly followed by a quick description of 
the genetic algorithm. At the end, the capability of 
the proposed method is demonstrated by giving a 
few examples. 
 
 
 

2. FLOW SOLVER 
 
The two-dimensional Euler equations governing 

the inviscid flow of a gas can be considered as: 
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Where Q  is the vector of conserved variables and 

G,F  are fluxes in x and y directions, respectively: 
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ρ  denotes density, u and v the Cartesian velocity 
components and E is the total energy. The set of 
equations is completed by an equation of state and 
a set of proper initial and boundary conditions. In 
all simulations, the ideal gas behavior with a 
constant specific heat ratio of 4.1=γ  is assumed: 
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The above set of equations is discretised by an 
explicit second-order Godunov-type scheme via 
the locally one-dimensional time-splitting method. 
For the sake of simplicity, here the algorithm is 
explained on a regular Cartesian grid but the idea 
can be extended to the generalized curvilinear 
coordinates in a similar manner. First, consider that 
part of Equations 1, which contains only the 
contribution of fluxes in the x direction: 
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The discrete form of this equation can be obtained 
by integrating (4) over a cell confined to the 
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where n

jQ denotes the cell average values and 
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2/1jF̂ + is the numerical flux function defined as: 
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Here, 2/1jF̂ +  is calculated by a second-order Godunov 
type method as follows: first, a monotonised central 
difference slope-limiter function [20] is used to 
obtain a second-order representation of initial 
averaged value within each cell. This representation 
of initial condition may lead to a set of 
discontinuous solution at the cell interfaces. Since 
the gradients of flow variables are also discontinuous 
at each cell interface, the solution to this initial 
condition is not self-similar in time and therefore, a 
Generalized Riemann Problem (GRP) should be 
solved in the next step to take into account the time 
behavior of 2/1jF̂ + : 
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Here, R

2/1jF + denotes the flux contribution from a 
Riemann solver using the constant interface 
variable values obtained in the first step. The Roe 
approximate Riemann solver is used to determine 

R
2/1jF + . Depends on the wave pattern emanating 

from discontinuities at initial time
+nt , the 

time derivatives are calculated by a closed form 
solution given by Ben-Artzi and Falcowitz [21]. 
After updating the initial condition by (5) the same 
algorithm is used to calculate the contribution of 
convective fluxes in the other direction.  
     Now let t

y
t

x L,L ∆∆  be the local one-dimensional 
split operator in x  and y direction, respectively. 
Then a fractional step method for the Euler 
equations become: 
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The proposed numerical algorithm is second-order 
accurate in time and space. The details of 
implemented scheme were discussed in previous 
publication [22] and for the sake of brevity are 
omitted here. 
     For each test case, one of the following 
boundary conditions may be implemented. At an 
inflow boundary depends on free-stream Mach 
number the flow parameters are either specified 
according to the known free-stream state or a non-
reflective boundary condition is applied. At solid 
boundaries, the normal velocity component and the 
normal pressure gradient are set to zero. The zero 
gradient extrapolation or non-reflective boundary 
condition depends on local flow Mach number is 
applied to the outflow boundary. 
 
 
 

3. NUMERICAL OPTIMIZATION AND 
GENETIC ALGORITHM (GA) 

 
3.1 Numerical Optimization   Numerical 
optimization is a vast field, which has been the 
subject of numerous text books [23-25]. One can 
categorize the optimization methods into two major 
classes, namely gradient-based (sometimes referred 
to as first-order) methods and global-based 
methods. 
     The solution procedure for gradient-based 
methods may be decomposed into four distinct 
steps: (a) evaluation of the objective function, F, to 
be minimized or maximized and any constraints, 
C, to be imposed, (b) evaluation of the gradients of 
the objective function F∇ , and C∇ constraints, 
with respect to the vector of design variable, 
commonly referred to as sensitivity derivatives, (c) 
determination of the search direction upon which 
the design variables will be updated, and (d) 
determination of the optimum step length. 
     However, in many engineering applications 
optimization problems with non-smooth, non-
differentiable, highly non-linear and many local 
minima cost functions are commonly encountered. 
In these applications conventional gradient-based 
algorithms are ineffective due to the problem of 
local minima or the difficulty in calculating 
gradients. Optimization methods that require no 
gradient and can achieve a global optimal solution 
offer considerable advantages in solving these 
difficult optimization problems. The two best-
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known classes of such global optimization methods 
are the genetic algorithm (GA) [26-28] and the 
simulated annealing (SA) [29-31]. 
 
3.2 Genetic Algorithm   A GA is a search 
method based on natural selection and genetics. 
The central theme of the research on GAs has been 
the balance between the robustness and the 
efficacy necessary for survival in many different 
environments. The GAs are computationally simple 
but powerful and not limited by assumptions about 
the search space. 
     The GA may be thought as an evolutionary 
process, where a population of solutions evolves 
over a sequence of generations. During each 
generation, the fitness (goodness) of each solution 
is calculated, and solutions are selected for 
reproduction on the basis of their fitness. The 
probability of survival of a solution is proportional 
to its fitness value. This process is based on the 
principle of survival of the fittest. The reproduced 
solutions then undergo recombination, which consists 
of crossover and mutation. A genetic representation 
may differ from the real form of the parameter of 
the solutions. Fixed-length and binary encoded 
strings have been widely used for representing 
solutions. 
     A simple GA is really easy to use. It uses three 
basic generic operators: reproduction, crossover 
and mutation. Reproduction is a process in which 
individual solutions are copied according to their 
fitness value (objective function values). Crossover 
requires a mating of two randomly selected strings 
of solution. The information on the strings is partly 
interchanged according to a randomly chosen 
crossover site. Crossover is applied to take valuable 
information from the parents, and its applied with a 
certain probability. Mutation is the occasional 
random alteration of the value of a string position. 
Mutation insures against bit loss, and can be a 
source of new bits. 
     The genetic algorithm used here requires 
determination of six fundamental issues: chromosome 
representation, selection function, the genetic 
operators making up the reproduction function, the 
creation of the initial population, termination 
criteria and the evolution function. Section 3.2 
describes each of these issues. 
 
3.2.1 Chromosome Representation and 

Selection Function   Starting with any optimization 
problem, each member of the population of initial 
trial solution is encoded as a string (or 
chromosome), which specifies the particular values 
of the design variables (in our case the parameters 
that define the shape of the airfoil). In this work, 
GA genes are computationally represented using 
bit strings (binary codes) and the operators 
(mutation, crossover, …) are designed to manipulate 
bit string data. 
     The selection of individuals to produce successive 
generation plays an extremely important role in the 
genetic algorithm. A probabilistic selection is 
performed, based upon the individual’s fitness 
such that the better individuals have an increased 
chance of being selected. An individual in the 
population can be selected more than once with all 
individuals in the population having a chance of 
being selected to reproduce into the next 
generation. There are several schemes for the 
selection process. 
 
• Roulette Wheel is the traditional selection 
function with the probability of surviving equal to 
the fitness of individual i, divided by the sum of 
the fitness of all individuals. 
• Norm Geometry Selection is a ranking selection 
function based on the normalized geometric 
distribution. 
• Tournament Selection is working by selecting j 
individuals randomly and, with replacement from the 
population and inserts the best of the j into new 
population. 
 
3.2.2 Genetic Operator   Genetic Operators 
provide the basic search mechanism of the GA. 
The operators are used to create new solutions 
based on existing solutions in the population. 
There are two basic types of operators: crossover 
and mutation.  
     Crossover takes two individuals and produces 
two new individuals while mutation alters one 
individual to produce a single new solution. The 
application of these two basic types of operators 
and their derivatives depends on the chromosome 
representation used. The most important ones that 
can be used in the program are: 
 
• Arithmetic crossover  
• Heuristic crossover  
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• Simple crossover 
Mutation is the occasional random alteration of the 
value of a string position. The applied mutation 
methods in the program are: 
 
• Boundary mutation  
• Multi-non-uniform mutation 
• Non-uniform mutation  
• Uniform mutation 
 
3.2.3 Initialization, Termination, and 
Evaluation Functions   The GA must be 
provided with an initial population. The most 
common method is to generate random solutions 
for the entire population. However, since GAs can 
iteratively improve existing solutions (i.e., 
solutions from other heuristics and/or current 
practices), the starting population can be seeded 
with potentially good solutions, with the 
remainder of the population being randomly 
generated solutions.  
     The GA moves from generation to generation 
selecting and reproducing parents until a termination 
criterion is met. The most frequently used stopping 
criterion is a specified maximum number of 
generations. Another termination strategy involves 
population convergence criteria. In general, GAs 
will force much of the entire population to 
converge to a single solution. When the sum of the 
deviations among individuals becomes smaller 
than some specified threshold, the algorithm can be 
terminated. The algorithm can also be terminated 
due to a lack of improvement in the best solution 
over a specified number of generations.  
     Evaluation functions of many forms can be used 
in a GA, subject to the minimal requirement that 
the function can map the population into a partially 
ordered set. As stated, the evaluation function is 
independent of the GA (i.e., stochastic decision 
rules). 
 
 
 

4. NUMERICAL IMPLEMENTATION 
 
The first step in the aerodynamic design 
optimization is the definition of the objective 
function. In sensitivity-based methods, it has been 
shown that to obtain smooth sensitivity derivatives, 
a central difference schemes with sufficient level 

of artificial viscosity is needed [32]. This has 
the effect of smearing the shock and, as a 
consequence, regularizing the objective function. 
The drawback is that the objective function will 
lose accuracy due to high degree of smearing at the 
shock and, therefore, the position of the minimum 
may be inaccurate. As GA does not need the 
calculation of the derivatives, the objective 
function can be calculated accurately. Therefore, the 
developed code utilizes an appropriate basic flow 
solver to accurately resolve all-important 
features of the flow field in order to accurately 
evaluate the objective function. The optimization 
procedure involves the following steps. 
 
1. start with a random set of population (initial 

generation) 
2. selection of parents base on the current 

population using objective function 
3. constructing the geometry and the mesh for 

each set of design variables 
4. apply the boundary conditions to the problem 
5. solve the flow equations  
6. compute the objective function and the fitness 

of each solution 
7. repeat from step 3 for all population inside a 

generation 
8. apply cross over and mutation rules to create 

the next generation 
9. repeat from step 2 until the objective function 

reaches its minimum 
 
     The implemented genetic procedure for this 
code is a standard genetic algorithm. It uses binary 
code for chromosome representations. Roulette 
Wheel for the selection of individuals, arithmetic 
crossover, uniform mutation and maximum 
number of generation as its termination 
function. In all calculations, the probabilities for 
the cross over and mutation were set to 0.5 and 
0.02 respectively. 
     Computational cost is mainly affected by step 5. 
The computational efficiency can be improved 
progressively by using previous results, which has 
the closest design parameters to the new design 
parameters. This can be done as follows: suppose 
that in ith function evaluation, the design parameters 
were N,,1n),   i(Pn K=  and in the present 
function evaluation parameters are N,,1n),   j(Pn K= . 
Then, the initial conditions for the present run is  
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obtained from the converged results of previous 
runs that has the minimum value of: 
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Depends on the distance between these parameters, 
the number of iterations in each flow calculation 
step can be reduced drastically. 
 
 
 

5. CASE STUDIES 
 

5.1 Case 1   The first problem used to evaluate the 
performance of the method is the flow pass over a 
bump. The shape of the bump was assumed to be 
part of a circle. The inverse problem here is to find 
the shape of the bump, which reproduces a 
specified pressure distribution. As an optimization 

 
Figure 1. The GA maximum fitness versus generation number for the bump problem. 

 
 
Figure 2. The pressure distribution at different generations for 
the bump problem. 
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problem the task is to find the shape that 
minimizes the difference between the desire and 
actual pressure on the bump. The only parameter 
change during the optimization procedure is the 
radius of the bump. The target solution was the 
computed pressure distribution over a bump with a 

radius of 1 and at inviscid transonic flow condition 
of 8.0M =∞ . Each gene in the GA selection is 
given a random initial value in the range of 0.5 to 
2. The objective (fitness) function for this case was 
defined as: 
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where the sum is over m point which define the 
geometry of the bump. )i(p is the bump non- 
dimensional pressure distribution and )i(p*  is the 
target surface pressure distribution. Defining the 
cost function in this way causes a rapid variation 
near the optimum point and increases the GA rate 
of convergence. 
     The GA was run with micro GA option on and 
maximum generations of 100. The population size 
was set to 5 and the probability of the mutation 
was assumed to be 0.02. Figure 1 shows the GA 
maximum fitness at each generation versus generation 
number. 
     Figure 2 shows the pressure distribution over the 
bump at different generation while Figure 3 depicts 
the final and target pressure distribution. After 100 
generation, it can be said that the problem was fully  

 
Figure 3. The final and target pressure distribution for the 
bump problem. 
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Figure 4. Computational mesh of 4060 × grids for the first case. 



314 - Vol. 16, No. 3, September 2003 IJE Transactions A: Basics 

converged and the design process has reproduced 
the target pressure within the specified 
tolerance. 
     Figures 4 and 5 show the computational domain 
and the pressure distribution around the bump at 
the final value for the bump radius, i.e. r=1. 
 
5-2 Case 2   The GA is next applied to an airfoil 
in a transonic flow. A two-dimensional implicit 
flow solver employing a second-order Godunov 
scheme is used to perform all function evaluations. 
Each airfoil geometry used in this case study is 

described by three parameters. The three parameters 
used for this description, which are also the 
chromosome used in GA are defined in Figure 6. 
These parameterization for a NACA four digits 
airfoil is adopted from ref. 33. 
     The target solution was the computed pressure 
distribution for a NACA2415 airfoil at inviscid 
transonic flow conditions ( 8.0M =∞ , o2=α ). 
The maximum/minimum values of each parameter 
are defined in Table 1. Again the fitness function is  
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Figure 5. Pressure contours for the first case, 3.1
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Figure 6. Airfoil parametrisation used for gene encoding. 

 
Figure 7. The GA maximum fitness versus generation number
for the inverse airfoil design. 
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TABLE 1. Maximum/Minimum Values Used for Initialization and GA Processing. 
 

Parameter Minimum Maximum Target Value Final Value Error% 

tc  0.05 0.3 0.15 0.1432 4.53 

mc  0.01 0.04 0.02 0.0177 11.5 

pc  0.1 0.7 0.40 0.4001 0.02 

 

 
(a) 

 

 
(b) 

Figure 8. The upper (a) and the lower (b) surface pressure 
distribution at different generations for the inverse airfoil 
design. 

(a) 
 

 
(b) 

 
Figure 9. The final and target pressure distribution for the
inverse airfoil design (a) upper surface and (b) lower surface. 
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defined in the same manner as case 1. 
     The GA was run with micro GA option on and 
maximum 200 generations. The population size 

was set to 5 and the probability of the mutation 
was assumed to be 0.02.  
     Figure 7 shows the GA maximum fitness at 
each generation versus generation number. It can 
be observed that the convergence was reached at 
the end of 200 generation. 
     Figure 8 shows the pressure distribution over the 
upper and lower part of the airfoil at different 
generation respectively. Figure 9 depicts the final 
and target pressure distribution for the inverse 
airfoil design after 200 generation. Again, one can 
say that the design process has reproduced the 
target pressure within the specified tolerance. 
     Another important way to view the performance 
of the whole procedure is to measure convergence 
against computer time. It should be noted that the 
time spent by the CPU for the convergence of the 
flow solver is about 87% of the total time. However, 
using a strategy to set initial conditions by the 
nearest converged solutions reduce this time 
considerably. Again, the computational domain 
and the pressure distribution around the airfoil are 
shown in Figures 10a and 10b, respectively. 
 
 
 

6. CONCLUSIONS 
 
In this paper, a genetic algorithm (GA) procedure 
suitable for aerodynamic design optimization was 
presented. It uses binary encoding to represent the 
parameters of the studied geometries as genes in 
the GA. The uniform mutation, uniform cross over 
and micro GA options was used to operate GA 
from one generation to the next. 
     The developed GA/Euler flow solver code 
performed well on the presented case studies, 
namely transonic flow over a bump and a NACA 
four digits airfoil. Reasonable level of convergence 
was reached for all cases in several hundreds 
function evaluations. 
     The GA/flow solver coupling was quiet easy to 
set up and only required a few hours for solving 
the bump problem. Theoretically a wide range of 
optimization problems can be solved using the 
developed code with a small implementation effort 
providing an appropriate objective function. 
     The results indicate that the GA approach is 
robust. However, a gradient-based method would 
probably provide solution to the single-objective 
and smooth problems in less computer time. Using 
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Figure 10a. Computational domain for case 2 Mesh size 
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Figure 10b. Pressure contours for case 2 1.0p
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a progressive methodology explained in the paper, 
the required convergence time for the solution was 
reduced by a factor of 5 for the developed 
GA/Euler flow solver code. 
 
 
 

7. ABBREVIATIONS 
 
CFD Computational fluid dynamics 
GA Genetic algorithm 
SA Simulated annealing 
 
 
 

8. NOMENCLATURE 
 
γ  specific heat ratio 
ρ  density 

t∆  time step 
x∆  cell length 

E  internal Energy 
∞M  free stream Mach number 

p  pressure 

∞p  free stream pressure 
v,u  Cartesian velocity components 

Q  vector of conserved variables 
F  Flux in x direction 
G  Flux in y direction 

n
jQ  Cell average values of conserved variables  

)j(Pn  Design parameters at generation j 

objF  Objective function (Function to be optimized) 
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