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Abstract   Response of a transversely isotropic 3-D half-space subjected to a surface time-harmonic 
excitation is presented in analytical form. The derivation of the fundamental solutions expressed in 
terms of displacements is based on the prefect series of displacement potential functions that have 
been obtained in the companion paper by the authors. First the governing equations are uncoupled in 
the cylindrical coordinates. Then, the uncoupled equations are analytically solved to obtain Green 
functions that are expressed in terms of Fourier series in the tangential direction of the coordinates 
and in terms of Hankel functions in its radial direction. The analytical Green functions of this paper 
are exactly same as the results of Lamb (1904) in the case of isotropic material. The Green functions 
can be used as the kernel functions of the boundary integral equation that is used to solve 
elastodynamic boundary value problems. 
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 خطي با رفتار ايزوتوپ جانبي تحت اثر تحريك سطحي              -    در اين مقاله پاسخ محيط ارتجاعي            چكيدهچكيدهچكيدهچكيده
مساله به صورت توابع تغيير مكان بر       ) توابع گرين (جواب اساسي   . هارمونيك به صورت تحليلي بدست مي آيد     

بدين منظور، در ابتدا دستگاه معادلات ديفرانسيل .  مي آيداساس توابع پتانسيل ارائه شده در مقاله مكمل به دست  
حاكم بر مساله در دستگاه مختصات استوانه اي به صورت جدا از هم در آمده و سپس معادلات مستقل شده به                     

توابع . صورت تحليلي با استفاده از سري فوريه در امتداد مماسي و تبديل هنكل در امتداد شعاعي حل مي شوند                  
 خطي با رفتار     �يير مكان به دست آمده در اين مقاله، در حالت ساده تر مربوط به محيط ارتجاعي                    گرين تغ 

نتايج عددي به منظور نشان .  به دست آورده است، كاملا منطبق مي باشد١٩٠٤ايزوتوپ با نتايج لمب كه در سال 
توابع گرين اين مقاله     .  دارد دادن شكل تغيير مكان ها نيز انطباق خوبي با جواب موجود در محيط ايزوتوپ                

مي تواند براي حل مسائل انتشار امواج به روش المان هاي مرزي به عنوان هسته انتگرال ها مورد استفاده قرار                     
 .گيرد

1. INTRODUCTION 

The study of elastic wave propagation was initiated 
by the pioneering work by Lamb (1904) providing 

the responses of both two-dimensional and three-
dimensional elastic half spaces subject to time-
dependent harmonic surface point loads. The 
response in Lamb�s paper is expressed in terms of 
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displacement vectors. Since then, a number of 
approaches have been made to solve the problems 
of wave propagation through an isotropic medium. 
Using Helmholtz decomposition (Achenbach, 
1973), the equations for an isotropic medium are 
easily uncoupled. Certainly, however, the method 
does not allow us to cope with the complicated 
problems of wave propagation through an 
anisotropic medium. On the other hand, anisotropic 
materials have been extensively used in 
engineering practices. In case of soil-structure 
interaction problems, for example, it is to be noted 
that soils are mostly viewed as transversely 
isotropic materials. This fact demands further 
extensive study on the problems related to the 
dynamics of these materials. 
     A transversely isotropic medium is viewed as a 
particular case of anisotropic materials. Svnge 
(1957) studied the propagation of Rayleigh waves 
in a transversely isotropic medium, and proved that 
the Rayleigh waves propagate only when the 
stress-free surface of the material is parallel or 
normal to the axis of symmetry. Freeman and Keer 
(1972) solved, by using potential functions, the 
vibratory motion of a body resting on an 
orthotropic half-plane. Rajapakse and Wang (1991) 
have also obtained the solution for an embedded 
body. They first uncoupled the set of equations of 
motion by a method of elimination, and then 
solved the fourth order ordinary differential 
equation. Rajapakse and Wang (1993) described 
the wave propagation problem in a transversely 
isotropic medium by using integral transformation 
method as well as the potential functions. 
     In this paper the Green functions for a 
transversely isotropic half-space subjected to a 
time harmonic surface load are presented in the 
analytical form. The coupled equations of motion 
described in terms of displacement components are 
first uncoupled by means of a prefect series of 
potential functions, which has been obtained by the 
authors in the companion paper (Ghadi and 
Noorzad). Then the partial uncoupled equations for 
the potential functions are solved analytically. 

2. THE GOVERNING EQUATIONS 

Let us consider transversely isotropic elastic half-

space in a cylindrical coordinate system )z,θ,r( . 
The z-axis of the coordinates is assumed to be 
normal to the plane of isotropy )θ,r( . By ignoring 
body force, the governing equations of motion are 
written as (Lekhnitskii. 1981): 
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where ,...σ,σ θrrr  are stress tensor components, U, 
V and W are displacements in r, θ  and z direction, 
respectively and ρ  is the density of the medium. 
     The strain-stress relationship of the medium is 
given as (Lekhnitskii. 1981): 
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with 

a66 = 2 (a11-a12) (3) 

where a11, a12,� are the elastic constants. 
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     From Equation 2, stress components are 
described in terms of strains as: 





















































=



























θr

zθ

rz

zz

θθ

rr

66

44

44

131313

131112

131211

θr

zθ

rz

zz

θθ

rr

ε
ε
ε
ε
ε
ε

A200000
0A20000
00A2000
000AAA
000AAA
000AAA

σ
σ
σ
σ
σ
σ

 (4) 

where the coefficients A11, A12,� are expressed as: 
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with 

2
13331211 a2a)aa(m −+=  (6) 

     Substituting the strain-displacement relationship 
151 into Equation 4, the stress components are 
expressed in terms of the displacements. With the 
results substituted into Equation 1, the governing 
equations of motion take the form as following: 
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3. THE GENERAL SOLUTION 

The general solutions of Equation 7, in the 
frequency domain are given as follows: 
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     According to the work by the authors presented 
in the companion paper (Ghadi and Noorzad), the 
displacement components in the frequency domain 
are expressed in terms of scalar potential functions 
F and χ as: 
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     Substituting Equations 9-11 in Equation 8 
yields all the equations of motion (Equation 7) 
described in terms of the potential functions F and 
χ . These potential functions are eventually found 
to satisfy the following equations: 
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2
1S  and 2

2S  are the roots of the following equation, 

and are not pure imaginary numbers (Lekhnitskii, 
1981): 
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3.1. Determination of Functions χ  and F   
For obtaining the functions χ  and F, they are 
expressed herein in the form of Fourier expansion 
with respect to the circumferential coordinate θ , 
i.e. 
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where mχ  and Fm are respectively the Fourier 
expansion coefficients of functions F and χ . 
Substituting Equation 24 in Equation 17 and 
applying the Hankel transform of order m to mχ , 
leads to the following equation 
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where m
mχ  is the (m)th-order Hankel transform of 

function m
mχ  which is defined as: 
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with 

)ζωρ(Sα 22
a00 −=′  (30) 

The coefficient )ζ(A m  is to be determined from 
the boundary condition. In Equation 29, the term 

zα 0e ′  is omitted, because only outwardly 
propagating waves are considered. The solution of 
Equation 16 in the wave number domain is 
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where )ζ(Bm  and )ζ(Cm  are arbitrary functions to 
be determined from the boundary conditions. 

3.2. Boundary Conditions   It is assumed that a 
harmonic load is applied to a patch pπ  on the 
stress free surface of the half space (Figure 1). The 

boundary conditions are expressed in the actual 
space as: 
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where )θ,r(p j  is the (j)th component of the load 
vector. Expanding the above stress and load 
functions in Fourier series with respect to θ , the 
transformed boundary conditions are expressed as: 
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From Equations 30 and 32, Fourier coefficients of 
the functions χ  and F are obtained in the wave 
number domain. It is thus required for the (m)th 
Fourier harmonic of the displacement function to 
be obtained in the wave number domain. To do 
this, the following four displacement functions 1u , 

2u , 1u ′  and 2u ′  are introduced here as: 
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where i2= -1. Comparing Equation 37 with 
Equation 9 and 10, it is noted that: 
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The (m)th Fourier hannonics of the above 

 
 
 
Figure 1. Semi-infinite transversely istropic medium under 
arbitrary surface harmonic load. 
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displacement functions are: 
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Applying Hankel transform to these equations 
yields: 
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Obviously, Equations 38 and 39 show that the 
Fourier series of the displacement functions m1u , 

m2u , m1u ′  and m2u ′  are described in terms of the 
inverse transform of m

mχ  and m
mF . And from 

Equation 37a the mth Fourier series of the 
displacement components are found to satisfy the 
following equations: 
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Likewise, the (m)th Fourier series of the 
displacement component w is given as: 
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Similarly, for stress components, the following 
equations are obtained: 
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TABLE 1. Functions Am, Bm and Cm in Terms of Load Functions. 
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Hankel transform of the mth Fourier series of j
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conditions Equations 36a,b, when Hankel 
transformed with respect to r, determines the 
unknown constants Am, Bm and Cm in Equations 
45, 46 and 47. They are listed for different load 
functions in Table 1. 
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4. GREEN FUNCTIONS 
Substituting Am, Bm and Cm from Table 1 into 
Equations 42 to 45, the m(th) Fourier series of the 
displacement Green functions are obtained as 
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TABLE 2. Material Constants. 
 

Material 
44

11

A
A

 
44

12

A
A

 
44

13

A
A

 
44

33

A
A

 
2

4
44 mm

N10A ×  

Isotropic 3.00 1.00 1.00 3.00 1.00 
Layered soil 2.11 0.43 0.47 2.58 1.40 
Beryl rock 4.13 1.47 1.01 3.62 1.00 
E-composite 3.17 1.40 11.11 10.04 0.47 
G-composite 2.024 0.683 0.073 21.17 0.41 

 
 
 
 
 

 
(a) 

 

 
(b) 

 
Figure 2. (a), (b) Integrand function of Gzz due to uniform patch load of radius R in z-direction (real part, isotropic madium). 
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4.1. Derivation of the Green Function for 
the Isotropic Media   The Green functions 

rzmG , zmGθ  and zzmG , Equations 57, 58 and 59, 
should be identical to those for the isotropic 
medium subjected to normal point loads Pz when 
the elastic constants Aij are expressed in terms of 
Lame constants ( ),( µλ ) as following: 
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λ==
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 (60) 

Substituting Equation 60 in Equations 57, 58 and 
59 yields the following expressions of the Green 
functions, that are found completely identical to 
those derived by Lamb (1904), and thus, validating 
the present approach: 
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where 
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5. NUMERICAL RESULTS 

The actual values of the Green functions are 
obtained through numerical evaluation of the 
integrals with infinite upper limits. The integrands 
of these integrals are complex functions including 
Bessel functions with oscillatory features. Bessel 
functions converge slowly to zero as the variable 
of integration rζ  increases. It is, however, noted 
that there exist singular points of the integrals, the 
poles related to Rayliegh wave generation. 
     These integrals cannot be evaluated analytically 
even in the case of isotropic medium cases. It is 
therefore required to employ a suitable numerical 
scheme to evaluate these Green functions. The 
singularities and oscillatory nature of the integrand 
require careful consideration in constructing the 
integration scheme and in setting the increment of 
variable of integration as well as the upper limit of 
the integral at some appropriate values. Reviewing 
the oscillatory nature of different Green functions, 
the trapezoidal method is used as the main scheme 
for numerical integration with the increment of 
ζ∆  set at a particular value less than 0.2. The 

upper limit of the various integrals have been 
determined reviewing the characteristics of 
integrands for different frequencies, ω. Because of 
the decaying functions zie α′− , (i= 0,1,2), the deeper 
the point is located, as is included in the integrand, 
the faster is the convergence. 
     Numerical evaluations of the integrals have 
been made assuming that a uniform patch load P0 
of radius R is applied. The obtained Green 
functions are described herein in terms of non-
dimensionalized parameter, including 

)
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Figure 3. Comparison of displacement in x-direction of isotropic elastic half- space due to uniform patch load of radius R in x-
direction. 

 

Figure 4. Displacement Green function zzG  due to uniform 

patch load of rsdiuc R in z-direction. 

 

Figure 5. Displacement Green function zzG  due to uniform 

patch load of rsdiuc R in z-direction. 
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     The real parts of the integrands for the Green 
function Gzz, for an isotropic medium are plotted 
for different frequencies a0= 0.5, 1.0 and 3.0 
(Figure 2). This figure clearly shows both 
singularities and oscillatory nature of the 
integrands. Singular points of the integrands are 
different for different frequencies, indicating that 
the Rayleigh waves propagate with special 
velocity. Also, this seen that the absolute values of 
the integrands converge on zero as ζ  increases. 
     Figure 3 shows the variation of ux for the 

isotropic material with respect to depth 
R
z

. The 

obtained variation is compared with the numerical 

solution by Pak (1987). The present solution is in 
good agreement with that by Pak. 
     The mechanical features of the different 
transversely isotropic media (Table 2) are 
discussed in terms of the present Green functions. 
These materials are (1) isotropic medium, (2) 
limestone/sandstone layered soil, (3) Beryl rock, 
(4) E glass/epoxy composite and (5) 
Graphite/epoxy composite [7]. The Poisson’s ratio 
of the isotropic material is equal to 0.25. 
     The graphical results are shown in Figures 4 to 
24. According to the figures the following results 
are worth to mention: 
1. The selected algorithm is appropriate for both 

low and high frequency time-harmonic 

 

Figure 6. Displacement Green function zzG  due to uniform 
patch load of rsdiuc R in z-direction. 

 
 

Figure 7. Displacement Green function zzG  due to uniform
patch load of rsdiuc R in z-direction. 
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motions in all directions (Figures 4 to 22). 
2. The imaeinarv parts of the Green functions are 

identically equal to zero in the case of the 
equivalently static loads (Figures 4, 11 and 16). 
In these cases, the differences in the response 
of the various materials arc dependent on the 
variation of the material constants. 

3. The responses Gxx are approximately equal to 
each other in the case of low frequencies 
(Figure 16), whereas in the cases of high 
frequencies the responses are quit different. 
This result shows that the consideration of the 
anisotropic mechanical properties is needed. 
Differences in time-harmonic motion in high 
frequencies are seen in Figures 17 to 22. 

4. By consideration of the figures, it is understood 
that the wave-number varies almost linearly 
with respect to the frequency. 

5. The wavelength in each direction is directly 
dependent to the mechanical constant of the 
same direction. Based on this, it is expected 
that the wavelength for greater constant is 
larger than that of the smaller constant. This 
fact is particularly evident in function Gzz. 
(note that to the differences in A33). See 
Figures 5 to 15. 

6. The decay of displacements with distance is 
smoother in low frequencies. However, this 
decay becomes increasingly oscillatory as 
frequency of loading increases. 

 

Figure 8. Displacement Green function zzG  due to uniform 

patch load of rsdiuc R in z-direction. 

 

Figure 9. Displacement Green function zzG  due to uniform 

patch load of rsdiuc R in z-direction. 
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Figure 11. Displacement Green function zzG  due to uniform 
patch load of rsdiuc R in z-direction. 

 

Figure 12. Displacement Green function zzG  due to uniform
patch load of rsdiuc R in z-direction. 
 
 

 

Figure 13. Displacement Green function zzG  due to uniform
patch load of rsdiuc R in z-direction. 
 
 

 

Figure 14. Displacement Green function zzG  due to uniform
patch load of rsdiuc R in z-direction. 

 
 
 

Figure 10. Displacement Green function zzG  due to uniform 
patch load of rsdiuc R in z-direction. 
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Figure 15. Displacement Green function zzG  due to uniform patch load of rsdiuc R in z-direction. 
 

 
 

Figure 16. Displacement Green function zzG  due to uniform patch load of rsdiuc R in z-direction. 



IJE Transactions B: Applications Vol. 16, No. 2, July 2003 - 119 

6. CONCLUSIONS 

Exact displacement Green functions for analytical 
solution of transversely isotropic elastic half-space 
subjected to arbitrary time-dependent harmonic 
surface loadings have been presented. By means of 
these Green functions analytical solutions have 
been obtained in wave number domain so that in 
actual domain, they are in the form of semi-infinite 
integrals. The integrands of these integrals have a 
finite number of singularities. For numerical be 

results, five different materials have used, where 
one of which is isotropic and the others are 
transversely isotropic. In numerical evaluation the 
loads are considered to be uniform patch load of 
radius R. 
     According to the numerical results, the 
influence of material anisotropy on the response 
Gxx and Gzz in the case of low frequency is mainly 
reflected by the values of material constants of that 
direction i.e. A11 and A33, respectively. And, in 
high frequency, the influence of material 

 
 

Figure 17. Displacement Green function zzG  due to uniform 
patch load of rsdiuc R in z-direction. 

 
 

Figure 18. Displacement Green function zzG  due to uniform
patch load of rsdiuc R in z-direction. 
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anisotropy is reflected not only by the material 
constant values of that direction but by other 
material constants as well. The decay of 
displacements with distance is smoother in low 
frequencies. However, the decay is turned to be 
oscillatory in nature as the frequency of loading 
increases. 
     These results can be used to develop analytical 
solutions for some fundamental problems related to 
earthquake engineering and soil dynamics. Green 
functions presented in this paper are important in 
the development of boundary integral equation 

methods for analysis of seismic wave scattering in 
transversely isotropic soils and anisotropic soil-
structure interaction problems. 
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Figure 19. Displacement Green function zzG  due to uniform 
patch load of rsdiuc R in z-direction. 

 
 

Figure 20. Displacement Green function zzG  due to uniform
patch load of rsdiuc R in z-direction. 


