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Abstract Response of a transversely isotropic 3-D half-space subjected to a surface time-harmonic
excitation is presented in analytical form. The derivation of the fundamental solutions expressed in
terms of displacements is based on the prefect series of displacement potential functions that have
been obtained in the companion paper by the authors. First the governing equations are uncoupled in
the cylindrical coordinates. Then, the uncoupled equations are analytically solved to obtain Green
functions that are expressed in terms of Fourier series in the tangential direction of the coordinates
and in terms of Hankel functions in its radial direction. The analytical Green functions of this paper
are exactly same as the results of Lamb (1904) in the case of isotropic material. The Green functions
can be used as the kernel functions of the boundary integral equation that is used to solve
elastodynamic boundary value problems.
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1. INTRODUCTION the responses of both two-dimensional and three-

dimensional elastic half spaces subject to time-

The study of elastic wave propagation was initiated dependent harmonic surface point loads. The
by the pioneering work by Lamb (1904) providing response in Lamb’s paper is expressed in terms of
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displacement vectors. Since then, a number of
approaches have been made to solve the problems
of wave propagation through an isotropic medium.
Using Helmholtz decomposition (Achenbach,
1973), the equations for an isotropic medium are
casily uncoupled. Certainly, however, the method
does not allow us to cope with the complicated
problems of wave propagation through an
anisotropic medium. On the other hand, anisotropic
materials have Dbeen extensively used in
engineering practices. In case of soil-structure
interaction problems, for example, it is to be noted
that soils are mostly viewed as transversely
isotropic materials. This fact demands further
extensive study on the problems related to the
dynamics of these materials.

A transversely isotropic medium is viewed as a
particular case of anisotropic materials. Svnge
(1957) studied the propagation of Rayleigh waves
in a transversely isotropic medium, and proved that
the Rayleigh waves propagate only when the
stress-free surface of the material is parallel or
normal to the axis of symmetry. Freeman and Keer
(1972) solved, by using potential functions, the
vibratory motion of a body resting on an
orthotropic half-plane. Rajapakse and Wang (1991)
have also obtained the solution for an embedded
body. They first uncoupled the set of equations of
motion by a method of elimination, and then
solved the fourth order ordinary differential
equation. Rajapakse and Wang (1993) described
the wave propagation problem in a transversely
isotropic medium by using integral transformation
method as well as the potential functions.

In this paper the Green functions for a
transversely isotropic half-space subjected to a
time harmonic surface load are presented in the
analytical form. The coupled equations of motion
described in terms of displacement components are
first uncoupled by means of a prefect series of
potential functions, which has been obtained by the
authors in the companion paper (Ghadi and
Noorzad). Then the partial uncoupled equations for
the potential functions are solved analytically.

2. THE GOVERNING EQUATIONS

Let us consider transversely isotropic elastic half-
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space in a cylindrical coordinate system (r,0,z).
The z-axis of the coordinates is assumed to be
normal to the plane of isotropy (r,0) . By ignoring

body force, the governing equations of motion are
written as (Lekhnitskii. 1981):

90, +la°9r+l(0 s )+aozr: 52U

or r 00 Tl g, 912
2
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where G, ,0,9,... are stress tensor components, U,
V and W are displacements inr, 0 and z direction,
respectively and p is the density of the medium.

The strain-stress relationship of the medium is
given as (Lekhnitskii. 1981):
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where a;, a;»,... are the elastic constants.
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From Equation 2, stress components are
described in terms of strains as:
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where the coefficients A, Aj,,... are expressed as:
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Substituting the strain-displacement relationship
151 into Equation 4, the stress components are
expressed in terms of the displacements. With the
results substituted into Equation 1, the governing
equations of motion take the form as following:
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3. THE GENERAL SOLUTION

The general solutions of Equation 7, in the
frequency domain are given as follows:

U(r,0,z,t) = u(r,0,z)e"
V(r,0,z,t) = v(r,0,z)e"" 3
W(r,0,z,t) = W(r,e,z)eimt

According to the work by the authors presented
in the companion paper (Ghadi and Noorzad), the
displacement components in the frequency domain
are expressed in terms of scalar potential functions
F and X as:

0°F _1lox
=- 9
U % %02 100 ®)
v =-q0 L O°F a_x (10)
raeaz or
O, 02 ,Od
w=1+o)@B, +p—+tp, 0 [F (11)
0 0z 0
where
_ 0,
= 12
e (12)
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Po p
pa 1 + 0.1 pO A66 ( )
0’1 = A66 + A12 , az — A44 , = A13 A44 (14)
A66 A66 66

Ny=— b (15)

Substituting Equations 9-11 in Equation 8
yields all the equations of motion (Equation 7)
described in terms of the potential functions F and
v . These potential functions are eventually found

to satisfy the following equations:

AALF =0 (16)
Ny =0 (17)
where
2 2 1 ? 2
Ay =A% +S_2 2 *po (18)
0
2 _ a2 1 0> 1 .
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1 A
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) Ay
where
A
By =0, = A44 (21)
66
A
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66

S? and S are the roots of the following equation,
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and are not pure imaginary numbers (Lekhnitskii,
1981):

A33A44Sz +(A123 +2A13A44 _A11A33 )Sz

23
+A Ay =0 29

3.1. Determination of Functions ¥y and F
For obtaining the functions x and F, they are
expressed herein in the form of Fourier expansion
with respect to the circumferential coordinate 0,
ie.

x(r,0,z) = z A (1,2)e™” (24)
F(r,0,z) = Z F,(r,z)e"” (25)

where yx,, and F, are respectively the Fourier
expansion coefficients of functions F and .
Substituting Equation 24 in Equation 17 and
applying the Hankel transform of order m to %,
leads to the following equation

1 d’m

S0 dz2 +(p 0> = )xm =0 (26)

where y o is the (m)th-order Hankel transform of

function y > which is defined as:

13(0.2) = [2 () (Cr)dr @7
0

and the inverse relationship is given by

1 (2) =[2G DT () e8)
0

where J  (Cm) is the (m)th-order Bessel function

of the first kind.
The solution of Equation 26 is

In(62) = A, Qe (29)
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p(r,0,z=0,0)=p(r,0,z = 0)e""

Figure 1. Semi-infinite transversely istropic medium under
arbitrary surface harmonic load.

with

oy = Sev/(p,0° —C?) (30)

The coefficient A | ({) is to be determined from
the boundary condition. In Equation 29, the term

'
ooz

e is omitted, because only outwardly
propagating waves are considered. The solution of
Equation 16 in the wave number domain is

Fl(¢,z) = B, ({)e™* +C,, ({)e ™ (31)

with

@ =, [Ero? -0 (32)
1y

@, =8, [(Pro? - () (33)
25

where B, (§) and C_,({) are arbitrary functions to
be determined from the boundary conditions.

3.2. Boundary Conditions It is assumed that a

harmonic load is applied to a patch T, on the
stress free surface of the half space (Figure 1). The
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boundary conditions are expressed in the actual
space as:

0,(r,0) =p;(r,0) (r,6)Un,,z=0,(j=r,6,2) 34)

0, (r,0)=0 (t,0)0n,,2=0,(j=1,0,2)  (35)

where p;(r,0) is the (j)th component of the load
vector. Expanding the above stress and load
functions in Fourier series with respect to 0, the
transformed boundary conditions are expressed as:

Gim(1) =Pjm (1) (0D m,,2=0,(j=1,6,2) (36a)

G ,im(1) =0 (n0n,,z=0,(j=r,6,2) (36b)
From Equations 30 and 32, Fourier coefficients of
the functions ¥ and F are obtained in the wave
number domain. It is thus required for the (m)th
Fourier harmonic of the displacement function to
be obtained in the wave number domain. To do
this, the following four displacement functions u,,

u,, u; and u), are introduced here as:

idy 0X
ul = - - 4+
r 006 Or
i 0X  0X
u2 = - 4+ —
r 00 Or 37
. 0°F . 0°F
u, = -0y, +to,1
0roz rd00z
. 0°F . 0°F
uh, = —a, -0
0rdz rd00z

where i’= -1. Comparing Equation 37 with
Equation 9 and 10, it is noted that:

1, , i
u= 5(“1 +u2)—5(u1 —u,)

(37a)

1 i T !
v = E(UI +u,)+ E(UI —u3)
The (m)th Fourier hannonics of the above
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TABLE 1. Functions A,,, B,, and C,, in Terms of Load Functions.

Load Components A B Chj
i pii a,p, ap,
P, =Ps — 0,j=r P o o TS o<
o 2CA 20g(0) 2g(0)
) P4 a,psi a,psi
=p =0,7=6 - 2 — T3
P =P =] 2A,, 228(2) 228(0)
i C,P, CPs
P, =pe=0,j=2 0 - "
i @) g
displacement functions are: terms of I and F,' as:
S 1K, m
e ey L L €0 - 3 @06 RG22
v, = 0X ., —EX
T e (38) =3 f, o @0+ 3, @0]E X (@)
- 0 OF, m O 42
Hm OZHOr +rFmE 42)
. 0 WF, m_ 0O
e T Bar u, =-a3——ﬁ[ [ @0+ 1, @R G

Applying Hankel transform to these equations
yields:

ul ' = O
uln = -OXG
urm—l = —a Canr:l (39)
Im 3 dz
dfF
rm+1 m
2m 3C dZ

Obviously, Equations 38 and 39 show that the
Fourier series of the displacement functions u,,,,

u,., up, and u,  are described in terms of the

inverse transform of y. and F. . And from

Equation 37a the mth Fourier series of the
displacement components are found to satisfy the
following equations:

1 i

u, = E(ulm +u2m) E(ulm + u2m) (40)
1 i I !

Vi zz(ulm +u2m)+5(ulm _u2m) (41)

Therefore, u_ and v, are eventually expressed in
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= B @) =3 @n]EX R @
(43)

Likewise, the (m)th Fourier series of the
displacement component w is given as:

wm :(1+al)

=0 p,m a
J(') ljp() _C2)+ 2
Ol+oa 1+,

(44)

& oy (e
dz? gm m

Similarly, for stress components, the following
equations are obtained:

O m ]
crz?: + Grz%; = iA44iD'CX$ —i0,C dr, ad
z [ dz O (45)
O Po®° o, d? O
+A 1+a)(——=- +—2——)F"
44%@( U'1)(1_|_a1 C 1+(11 dZ2 m%
m d m dFlnD
O-zrml 10-zem = _1A44 %X _IGSZ d
CO)
pOw 2 Gz d2 m|:|
+ A l+a)(——-("+———)F
44§( 1)(1+0(1 ¢ 1+a, dz’
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where o om o

zrm ?

are the jth order

Hankel transform of the mth Fourier series of o/

zrm
O'J

j
om and o

»m» respectively. The boundary
conditions Equations 36a,b, when Hankel
transformed with respect to r, determines the
unknown constants A, B, and C, in Equations
45, 46 and 47. They are listed for different load
functions in Table 1.

In Table 1:
P(r,8) = p,(1,0)e, + py(r,0)eq +p,(1,0)e, (48)

P, =pm +Pm
P, =Pm ~Pm
Py =Pon *Pom. “49)
Py =Pom ~Pom.
Ps =Pom
a :G’13+G2G;3A33
a, =G'2a+G2(X'23A33
a=0,AL—AL(1+0) +A,p,w
(50)

¢, =aia, +p,w - (1+a)+a’a,
- > _ 72 2

c, =aya, +p,w —{(I1+a,)+ajya,

g({) = c,a, —ca,

a, = 0ja+0a,0°A,

4. GREEN FUNCTIONS

Substituting A,, B, and C, from Table 1 into
Equations 42 to 45, the m(th) Fourier series of the
displacement Green functions are obtained as

Grrm :%J‘:Z[‘]mﬂ(zr) _Jm—l (Z r)] [al a,2 e‘O"zZ - G2 GII e_uaz]

p, ¢

2A,, &0)
_; [} WWa @) 41,,@0)] ZAP g
(51)
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Ga'm :_1% J’:Z [Jm+l (Zr) _Jm—l (Zr)] [al dZ e_dzz _GZ (x,l e_dlz

P &
24,40
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TABLE 2. Material Constants.

A A A A N
Material . S = —3 A, x10* >
A A Ay Ay mm
Isotropic 3.00 1.00 1.00 3.00 1.00
Layered soil 2.11 0.43 0.47 2.58 1.40
Beryl rock 4.13 1.47 1.01 3.62 1.00
E-composite 3.17 1.40 11.11 10.04 0.47
G-composite 2.024 0.683 0.073 21.17 0.41
. . Integrand function R
g g g g g g

Xi

(@)

Integrand function
o o n o o o
3 8 8 8 8 8

Xi

I

ao=3

(b)

Figure 2. (a), (b) Integrand function of G,, due to uniform patch load of radius R in z-direction (real part, isotropic madium).
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G, :%I;Z[Jmﬂ Qn)-J (Zr)][O(1 o, e ™ —a, o e‘“'lz]

P dC

2A,2(0)
e S
2 Jo @O+ @] e

(58)

Gy =2 [} Ul @)= @)oo e —o,a e ]

P do
24,8
By P e
2o Lo @ 11, @0] e

(59)

4.1. Derivation of the Green Function for
the Isotropic Media  The Green functions
G G and G Equations 57, 58 and 59,
should be identical to those for the isotropic
medium subjected to normal point loads P, when
the elastic constants Aj are expressed in terms of
Lame constants ((A, 1)) as following:

rzm ° 6zm zzm °

Ay =Ay =A+20

A, =A, =) (60)
All = A33 = u

Substituting Equation 60 in Equations 57, 58 and
59 yields the following expressions of the Green
functions, that are found completely identical to

those derived by Lamb (1904), and thus, validating
the present approach:

—_— pz J':k2za JO(Zr) dz

“ 2mp [ F(Q) ]
— p., MZZ 2Zz—k2 —2(1[3 (61)
1z 2_,_[“-[0 F(Z) Jl(zr)dz
Gy, =0

where

N — 2 _ 1,2\ _ 272
F({) = a(A+u)2g(Z) (20" -k*)-4C’aB  (62)
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K2 = sz (63)
2 2 P 2
=( - w
A+2U (64)
BZ = Z2 _k2

5. NUMERICAL RESULTS

The actual values of the Green functions are
obtained through numerical evaluation of the
integrals with infinite upper limits. The integrands
of these integrals are complex functions including
Bessel functions with oscillatory features. Bessel
functions converge slowly to zero as the variable
of integration {r increases. It is, however, noted

that there exist singular points of the integrals, the
poles related to Rayliegh wave generation.

These integrals cannot be evaluated analytically
even in the case of isotropic medium cases. It is
therefore required to employ a suitable numerical
scheme to evaluate these Green functions. The
singularities and oscillatory nature of the integrand
require careful consideration in constructing the
integration scheme and in setting the increment of
variable of integration as well as the upper limit of
the integral at some appropriate values. Reviewing
the oscillatory nature of different Green functions,
the trapezoidal method is used as the main scheme
for numerical integration with the increment of
AL set at a particular value less than 0.2. The

upper limit of the various integrals have been
determined reviewing the characteristics of
integrands for different frequencies, W. Because of

the decaying functions e ™%, (i= 0,1,2), the deeper
the point is located, as is included in the integrand,
the faster is the convergence.

Numerical evaluations of the integrals have
been made assuming that a uniform patch load P,
of radius R is applied. The obtained Green
functions are described herein in terms of non-
dimensionalized parameter, including

G A
GiA(:U_“)’ a,(=Rw L)’ X and E.
! P,R A, R R
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Figure 3. Comparison of displacement in x-direction of isotropic elastic half- space due to uniform patch load of radiusR in x-
direction.
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Figure 4. Displacement Green function G, due to uniform

patch load of rsdiuc R in z-direction.
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LR L] .58 LD o0

E-campasibe Im)
Layanad Soil (i)
e | P BT

- — — Beryl Foch {Im)

ay = 1.0

|

Figure 6. Displacement Green function EZZ due to uniform
patch load of rsdiuc R in z-direction.

The real parts of the integrands for the Green
function G,,, for an isotropic medium are plotted
for different frequencies a,= 0.5, 1.0 and 3.0
(Figure 2). This figure clearly shows both
singularities and oscillatory nature of the
integrands. Singular points of the integrands are
different for different frequencies, indicating that
the Rayleigh waves propagate with specia
velocity. Also, this seen that the absolute values of
the integrands converge on zero as { increases.

Figure 3 shows the variation of u, for the
. : : , z
isotropic material with respect to depth E The

obtained variation is compared with the numerical

IJE Transactions B: Applications

f—— G-composit(e (Re) |
| ----- E-composite (Re) |
| . = ——Beryl Rock (Re)

Layered Soil (Re) .
Isotropic(Re) ‘

v oap= 3.0

Figure 7. Displacement Green function GZZ due to uniform
patch load of rsdiuc R in z-direction.

solution by Pak (1987). The present solution isin
good agreement with that by Pak.

The mechanical features of the different
transversely isotropic media (Table 2) are
discussed in terms of the present Green functions.
These materials are (1) isotropic medium, (2)
limestone/sandstone layered soil, (3) Beryl rock,
(49 E glass/epoxy composite and (5)
Graphite/epoxy composite [7]. The Poisson’s ratio
of the isotropic material isequal to 0.25.

The graphical results are shown in Figures 4 to
24. According to the figures the following results
are worth to mention:

1. The selected agorithm is appropriate for both
low and high frequency time-harmonic
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Figure 8. Displacement Green function GZZ due to uniform
patch load of rsdiuc R in z-direction.

motionsin dl directions (Figures 4 to 22).

The imaeinarv parts of the Green functions are
identically equal to zero in the case of the
equivaently datic loads (Figures 4, 11 and 16).
In these cases, the differences in the response
of the various materials arc dependent on the
variation of the material constants.

The responses G are approximately equd to
each other in the case of low frequencies
(Figure 16), whereas in the cases of high
frequencies the responses are quit different.
This result shows that the consideration of the
anisotropic mechanical properties is needed.
Differences in time-harmonic motion in high
frequencies are seen in Figures 17 to 22.
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Figure 9. Displacement Green function G 2 dueto uniform
patch load of rsdiuc R in z-direction.

4. By condderation of the figures, it is understood
that the wave-number varies amost linearly
with respect to the frequency.

5. The waveength in each direction is directly
dependent to the mechanical constant of the
same direction. Based on this, it is expected
that the wavelength for greater constant is
larger than that of the smaller constant. This
fact is particularly evident in function G,.
(note that to the differences in Ajs). See
Figures 5 to 15.

6. The decay of displacements with distance is
smoother in low frequencies. However, this
decay becomes increasingly oscillatory as
frequency of loading increases.
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Figure 10. Displacement Green function GZZ due to uniform
patch load of rsdiuc R in z-direction.
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Figure 11. Displacement Green function GZZ due to uniform
patch load of rsdiuc R in z-direction.
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Figure 12. Displacement Green function GZZ dueto uniform
patch load of rsdiuc R in z-direction.

Figure 13. Displacement Green function GZZ due to uniform
patch load of rsdiuc R in z-direction.
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Figure 14. Displacement Green function GZZ due to uniform
patch load of rsdiuc R in z-direction.

Vol. 16, No. 2, July 2003 - 117



0.30

2Z 020 \\ —
0.10 +— ro
0.00 \ Pt S e W= o N S S .
o://) 7 PERRRA 40 slo 60 8lo alo 140
l
L
0.10 /
/ :
/ -
020 ! ; |—e— G-composite (Im) ]
72 L E-composite (Im)
/ — — — Beryl Rock (Im)
030 y Layered Soil (Im) | ...
[
/
/ =30
!/ —
0.40 7 % . —
0.50

0.00

0.10 0.

20 0.30

0.00

All Imaginary Parts

P

0.50

1.00

1.50

2.50

3.00

3.50

4.00

— G—composiie (Re)
G-composite (Im)
------ E-composite (Re)
E-composite (Im)
— — — Beryl Rock (Re)
Beryl Rock (Im)
Layered Soil (Re)
Layered Soil (Im)
—— |sotropic(Re)

Isotropic(Im)
i

|
|

ao :0.1 ]

5.00

\

Figure 16. Displacement Green function GZZ due to uniform patch load of rsdiuc R in z-direction.
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Figure 17. Displacement Green function GZZ due to uniform
patch load of rsdiuc R in z-direction.

6. CONCLUSIONS

Exact displacement Green functions for analytical
solution of transversely isotropic elastic half-space
subjected to arbitrary time-dependent harmonic
surface loadings have been presented. By means of
these Green functions anaytical solutions have
been obtained in wave number domain so that in
actual domain, they are in the form of semi-infinite
integrals. The integrands of these integrals have a
finite number of singularities. For numerical be
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Figure 18. Displacement Green function 522 due to uniform
patch load of rsdiuc R in z-direction.

results, five different materials have used, where
one of which is isotropic and the others are
transversely isotropic. In numerical evaluation the
loads are considered to be uniform patch load of
radius R.

According to the numerica results, the
influence of material anisotropy on the response
Gy and G, in the case of low frequency is mainly
reflected by the values of material constants of that
direction i.e. Ay and Ag, respectively. And, in
high frequency, the influence of material
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Figure 19. Displacement Green function GZZ due to uniform
patch load of rsdiuc R in z-direction.

anisotropy is reflected not only by the material
constant values of that direction but by other
material constants as well. The decay of
displacements with distance is smoother in low
frequencies. However, the decay is turned to be
oscillatory in nature as the frequency of loading
increases.

These results can be used to develop analytical
solutions for some fundamental problemsrelated to
earthquake engineering and soil dynamics. Green
functions presented in this paper are important in
the development of boundary integral equation
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Figure 20. Displacement Green function Gzz due to uniform
patch load of rsdiuc R in z-direction.

methods for analysis of seismic wave scattering in
transversely isotropic soils and anisotropic soil-
structure interaction problems.
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