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Abstract   The performance of a product is often evaluated by several quality characteristics. 
Optimizing the manufacturing process with respect to only one quality characteristic will not always 
lead to the optimum values for other characteristics. Hence, it would be desirable to improve the 
overall quality of a product by improving quality characteristics, which are considered to be 
important. The problem consists of optimizing several responses using multiple objective decision 
making (MODM) approach and design of experiments (DOE). A case study will be discussed to show 
the application of the proposed method. 
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بهينه سازي يك فرآيند    .    عملكرد يك محصول غالباً بر اساس چندين مشخصه كيفي ارزيابي مي شود               چكيدهچكيدهچكيدهچكيده
. در نظر گرفتن فقط يك مشخصه كيفي هميشه منجر به بهينه شدن ساير مشخصه هاي كيفي نخواهد شدتوليد با 

. بنابر اين بايد سعي گردد تا كيفيت يك محصول با توجه به كليه مشخصه هاي كيفي مهم آن بهينه سازي شود                     
و ) MODM( چند هدفه    مساله مورد نظر شامل بهينه سازي چندين متغير پاسخ به وسيله رويكرد تصميم گيري              

به منظور نشان دادن كاربرد روش پيشنهادي يك مطالعه موردي مورد تجزيه            . مي باشد) DOE(طراحي آزمايشها   
 .و تحليل قرار خواهد گرفت

1. INTRODUCTION 

The overall value of a manufactured product is 
usually determined with respect to several quality 
characteristics or responses of interest. These 
responses are often interrelated and need to be 
considered simultaneously. For the case of a single 
response, design of experiments methods can be 
employed to analyze data and determine the 
optimum operating levels for process parameters, 
which influence the response. However, for the 
case of two or more responses, process optimization 

by means of optimizing only one characteristic at a 
time often results in non-optimal or even unacceptable 
values for other quality characteristics.  
     In multi-response experiments usually a 
combination of the following three types of 
responses are considered: 
1. Responses that we like them to be minimized

(Lower The Better - LTB) 
2. Responses that are required to be maximized

(Higher The Better - HTB) 
3. Responses that should conform to a desired 

target (Nominal Is Best - NTB) 
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     Hence, we can easily encounter an experiment 
in which the responses of interest are in contrast 
with each other and reaching a solution that 
optimizes all of these characteristics is usually 
impossible. Therefore, a compromise solution that 
improves these responses is desired. Simultaneous 
optimization techniques are mathematical procedures 
that can be helpful for the analysis of multi-
response experiments in order to determine the 
optimum operating condition. This is the operating 
condition at which all quality characteristics are as 
close to their nominal values as possible. 
     Simultaneous consideration of multiple responses 
involves first building an appropriate response 
surface model for each response and then trying to 
find a set of operating conditions which in some 
sense optimizes all responses or at least keeps them 
in desired ranges (Montgomery [1]). Figure 1 
summarizes the main steps in multiple response 
experiments. 
     The desirability function approach to multi-
response optimization is one of the most commonly 
used techniques for the analysis of experiments in 
which several quality characteristics must be 
optimized simultaneously. This method was first 
developed by Harrington [2] and later was 
modified by Derringer and Suich to improve its 

performance [3]. The latter method ignores the 
variability of the response variables and this can be 
considered as its major drawback. Goik et al. [4] 
compensates for this problem by incorporating 
variation in the desirability function. 
     The basic idea of the desirability function 
approach is to transform a multi-response problem 
into a single response problem by means of 
mathematical transformations. In this approach, for 
each response Yi (x), i = 1, 2, �, p, a function 
di(Yi(x)) with range of values between 0 and 1 is 
defined that measures how desirable it is that Yi(x) 
takes on a particular value. Here x = (x1, x2, x3, �, 
xk) denotes the vector of controllable or independent 
factors. Once the desirability function for each 
response variable is defined, an overall objective 
function D(x) is defined as the geometric mean of 
the individual desirability. 

( ) ( ) ( ) ( )[ ] p1
pp2211 YdYdYdD xxxx L=  (1) 

     The reason for considering the geometric mean 
is that if any quality characteristic has an 
undesirable value (i.e., ( )( )xii Yd  = 0) at some 
treatment combination or operating condition x = x0 
then the overall performance of the manufactured 

Step 1- Performing experiment using suitable designs such as factorial, fractional factorial or 
central composite designs 
 
Step 2- Obtaining significant regression models for predicting response values according to 
control variable settings. 

 
Step 3- Choosing the utility or value criterion for transforming response values to these 
criterions which enables one to effectively and correctly compare different control variable 
settings. 
 
Step 4- Determining bounds, targets, weights, priorities, etc. for each response. 
 
Step 5- Modeling the problem and using the resulting model to optimize responses through 
specified criterions by changing control variable levels. 
 
Step 6- Optimizing the model by using an appropriate optimization technique. 

 
Figure 1. Main steps in multi-response experiment optimization. 
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product is unacceptable, regardless of the values 
taken by the remaining response variables. 
     Box, Hunter and Hunter [5] considered using 
overlaying contour plots. This graphical method is 
also widely used since it can be easily performed 
and results are also easy to interpret but it has two 
major disadvantages. First, it is not applicable 
when we have more than two process variables and 
its� interpretation becomes difficult when the number 
of response variables increases to more than three. 
Second, contour plots are incapable of showing 
inherent errors. In this method, decisions are 
mostly made subjectively. 
     Many researchers have used Taguchi�s loss 
function as a value criterion in optimization of 
several responses. For example, Artiles-Leon [6] 
uses a dimensionless loss function for combining 
several loss functions associated with different 
response variables and uses this method to optimize a 
plastic molding process. Pignatiello [7] expanded 
Taguchi�s loss function to a multivariate loss 
function and presented a method based on 
minimization of deviation from target and 
maximization of robustness to noise. Elsayed and 
Chen [8] proposed a two-step method using 
Taguchi�s loss function. Many authors including 
Jayaram and Ibrahim [9], Kunjur and Krishnamurti 
[10] have also considered Taguchi�s loss function 
in their studies. 
     Jayaram and Ibrahim [11] introduced a method 
by using Cp and Cpk capability indices as desirability 
criteria. Khuri [12] introduced a new multi-response 
optimization approach based on a multivariate 
metric called Mahalanobis distance. His proposed 
distance metric is nearly the squared deviation of 
responses from their desired targets, normalized by 
the variance of the predicted responses. He is 
among the researchers who have published many 
articles in the area of multi-response optimization. 
Interested readers are referred to Khuri and Conlon 
[12], Khuri and Cornell [13], and Khuri [14]. 
     In the area of problem formulation and modeling, 
some researchers have applied multi-criteria decision 
making (MCDM) techniques for obtaining a 
compromise solution in multi-response optimization. 
Chang and Shivpuri [15] used an MODM technique 
for optimizing both casting quality and die life in a 
die casting process. In their work, they used 
desirability function proposed by Derringer and 
Suich [3] as the desirability criterion. Tang and Su 

[16] considered Technique for Order Preference by 
Similarity to Ideal Solution (TOPSIS) method to 
optimize a multi-response problem. Fogliatto [17] 
and Reddy [18] used Saati�s Analytical Hierarchy 
Process (AHP) and goal programming in multi-
response optimization, respectively. Multi 
Attribute Decision Making (MADM) techniques 
are used for selecting between several existing 
alternatives and therefore their application for 
optimizing multi-response experiments is only 
suggested when a significant regression model is 
not available. 
     Another MCDM technique that has been 
considered in optimization problems is the multi-
criteria steepest ascent method based on 
MCDM/PO (Duineveld and Coenegracht [19]). 
Briefly, in this method the steepest ascent direction 
that simultaneously optimizes the response 
variables is determined by identifying Pareto 
Optimal (PO) points on the common PO plot. 
Experimentation will be continued on this direction 
until no further improvement is perceived. 
     Some other techniques and procedures are also 
available in the literature, each having its own 
strengths and weaknesses. Some important issues 
that should be considered in multi-response 
techniques are: 
1. Simplicity and ease of application. 
2. Consideration of variability and correlation of 

responses. 
3. Interactivity. 
4. Flexibility of solutions. 
     The method proposed in this paper tries to 
incorporate these issues in the optimization 
problem. 
     In this paper, we propose a new approach for 
optimization and analysis of experiments with 
multiple responses based on the capability index 
Cpm, which is often considered in process 
capability analyses. This index is used as a utility 
criterion for assessing each response and then with 
the aid of MODM goal programming technique we 
try to determine an optimum solution for the 
process variables. 
     General formulation of multi-response models 
is reviewed in the next section. In the third section, 
the Cpm index is discussed. The fourth section 
contains the proposed optimization approach. A 
case study is discussed in the fifth section. 
Conclusions are provided in the final section. 
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2. GENERAL FORMULATION OF MULTI-
RESPONSE MODELS 

In general, formulation of the multi-response 
models starts with designing experiments and 
collecting information on each of the response 
variables iY , i = 1, 2, �, p for each treatment 
combination of design variables (Xj�s, j = 1, 2, �, 
k). Total number of treatments is denoted by t. 
Each response is related to a set of design variables 
by the following functional relationship: 

( ) ijk21iij X,,X,XfY ε+= K  i = 1, 2, �, p 
 
 j = 1, 2, �, k   (2) 

     In the above equation, the error term, ijε , is 
normally and independently distributed with mean 
zero and variance 2

ijσ . 
     Let Y(x) denote the 1p×  vector of the 
responses at a particular setting of the X�s in the 
experimental region denoted by x. Expected value 
of the response vector Y(x)  is a 1p×  vector 
shown by η(x). Mean of the ith response at a 
particular setting x, ηi(x) is estimated by a 
regression model. Let r denote the number of 
regression coefficients. The regression model for 
the response variable i at x is defined by: 

ii β�)(z)(Y� xx ′=  (3) 

where i
�β  is a 1r×  vector of regression coefficient 

estimates and )(z x′  is an 1r×  vector of regression 
variables. These regression variables may be main 
effect terms, cross-product terms, and squared 
terms as needed by the selected model. For 
example, )(z x′  can be equal to ( )2

12121 ,xx,x,xx,1 . 
     The variance-covariance of )(i xY  is shown by 
the pp×  matrix ( )∑ x . If variance of response 
variables are equal for all treatments, then 

( ) ∑∑ =x . Let )(Sy x  denote the estimate of 

( )∑ x  and let ∑�  be the estimator for∑ . 

     The 1p×  vector of target values for the 

response is defined by ττττ . Let ub and lb be 1p×  
vectors of the upper and lower bounds, respectively, 
for the acceptability region of the response variables. 
Any response value outside this region is considered 
unacceptable. 
     Our proposed approach uses a process capability 
index denoted by Cpm for assessing each setting of 
process variables considering both optimality of 
the response value and variability of the responses 
in that particular setting (Robustness). Before 
proceeding to model formulation using the Cpm 
capability index as an optimization criterion, we 
need to discuss few issues related to this index. 

3. THE CPM INDEX 

Chan et al. [20] suggested first the capability 
index, Cpm, sometimes referred to as the Taguchi 
index. This index gives a single numerical value, 
which pictures the total performance of a process 
and depends on both variability and deviation from 
target (centering). It ensures that conditions of 
centering and variability are satisfied. The Cpm 
index is defined by 

( )[ ] 21226 Targetµµµµσσσσ
LSLUSL

Cpm −+
−=  (4) 

The loss function appears in the denominator. The 
term ( )[ ] 21226 Targetµµµµσσσσ −+  gives average loss 
per piece for a sample. 
     The Cpm index is equal to the traditional 
capability index Cp when the process is perfectly 
centered between the upper and lower specification 
limits. The Cpm index begins to decrease as the 
process mean shifts away from the pre-specified 
target value or the process variability increases. 
Figure 2 presents a reference situation corresponding 
to the maximum acceptable loss in the case of a 
normal distribution. This situation refers to a 
centered production when Cpm = Cp = Cpk = 1.33. 
To avoid generating a loss (according to Taguchi) 
superior to the reference situation, the Cpm must 
remain superior to 1.33. 
     The Cpm index proposed by Chan et al. [20] is 
only applicable in the case of bilateral tolerances 
where we have both an upper and lower 
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specification limits for the process and a target 
which is usually at the center of the upper and 
lower tolerance interval. In many cases we are 
faced with process characteristics, which have 
unilateral tolerance limits (LTB and HTB). Pillet et 
al. [21] proposed a Cpm index for the case of 
unilateral tolerances bounded by zero. Their 
proposed Cpm index is defined as: 

[ ] 2122A

Tolerance

Xσσσσ
C pm

+
=  (5) 

where σ is the standard deviation of the population 
X  is the mean of the population, A is a constant 
that depends on the desired quality. Pillet et al. 
[21] recommended using A = 1.46 and they justify 
that this value ensures a good quality level. 
     In our proposed approach, we use Cpm as an 
index for assessing desirability of responses at 
each setting of control variables (factors). For the 
bilateral case, we use 

( )
( ) ( )( )[ ] 212

ii
2

i

ii
i,pm

��6

lbubC
ττττxx

x
−η+σ

−=  (6) 

For the unilateral case when higher-the-better type 

response is considered Cpm is defined as 

( )
( ) ( )( )[ ] 21

i
max2

i

i
max

i,pm
�y�46.1

lbyC
xx

x
η−+σ

−=  (7) 

and for lower-the-better type response Cpm can be 
defined as 

( )
( ) ( )( )[ ] 21min

i
2

i

min
i

i,pm
y��46.1

yubC
−η+σ

−=
xx

x  (8) 

In the above equations, )(C i,pm x  denotes the Cpm 
index value for ith response at control variables 
setting x . The quantities ubi and lbi are the upper 
and lower limits for ith response, respectively. 

( )x2
i�σ  and ( )xi�η  are the variance and mean of the 

ith predicted response at setting x, and iτ  denotes 
the desired target for the ith response. 
     The variance of the predicted response ( ( )x2

i�σ ) 
is derived from the following equation: 

( )
( )

( )[ ]

( )[ ]00
2

00
2

xXX'x

xXX'xx

''1�

''1
pt

y�y
�

1

1

i

n

1i

2
ii

i

−

−=

+σ=

+



















−

−
=σ
∑

 (9) 

where t is number of treatments and ip  is the 
number of regression coefficients for response i. 
When Cpm is utilized as a value function for 
assessing the response variables the following 
advantages can be expected: 
1. Since the variability of the response is 

considered the performance of the index 
will be superior to Derringer and Suich's 
desirability function and also other methods 
that only focus on the centering of the 
responses. 

2. It is relatively easier to understand and it can 
be compared to many other methods such as 
Khuri and Cornell [12], Pignatiello [7] and Oh 
[22]. This index is also applied in process 
capability studies in statistical process control 
(SPC) programs and it can be easily computed 

Tolerance = 8 σ 

Spread = 6 σ 

Cpm = 1.33, Cp = 1.33, Cpk = 1.33 
 

 
Figure 2. Reference situation Cpm=Cp=Cpk=1.33. 
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by most statistical packages. 
3. This index considers both deviation from 

target and variability in one single value and 
therefore it is superior to the method suggested 
by Jayaram and Ibrahim [11]. 

4. THE PROPOSED OPTIMIZATION 
APPROACH 

In this section, the problem will be formulated and 
solved as a non-linear goal-programming (NLGP) 
model. NLGP is a multiple objective decision 
making technique in which all objectives are 
considered as constraints in the model and a 
numerical goal level (ideal) is specified for each 
constraint. Goal constraints are conditions that are 
desired, but not required. For each objective (goal 
constraint) a positive and a negative deviation 
variable will be specified. The model will be 
optimized for minimizing the summation of these 
deviation variables. Weights can also be used in 
this procedure to indicate the proportional 
importance of each objective. The aim of goal 
programming is to minimize 

( )∑
=

−−++ +=
m

1i
iiii dwdwz  (10) 

Subject to: 

( ) igddf iiii ∀=−+ +−x  (11) 
i0d,d ii ∀≥−+  

The proposed approach in optimization of multi-
response experiments is summarized as follows. 
1. Specifying the process parameters to study 

and determine their ranges and levels.  
2. Specifying the response variables. 
3. Using DOE techniques and response surface 

methodology to obtain empirical models for 
iY  where i=1,2,�,p for predicting the 

response values as a function of control 
variables x. 

4. Specifying the upper and lower bounds and 
target for the responses (ubi, lbi, and iτ ). 

a. In case of NIB responses, the target is usually 

in the middle of the specification limits.  
b. In case of HTB (LTB) responses, the target is 
defined as maxy ( )miny  and is determined 
through solving the following model for the 
response: 

( ) ( )xη�zMinimize Maximze i=  (12) 

Subject to: 

( ) ( ){ }ijp,...,1j�
jj ≠∈≤ ubxηηηη  (13) 

( ) ( ){ }ijp,...,1j�
jj ≠∈≥ lbxηηηη  (14) 

Xx ∈  

5. Specifying the desired goals for Cpm,i( x ) 
indices (Cpm,i

*( x )). 
6. Applying NLGP methodology to formulate a 

problem for minimizing deviation of each of 
the Cpm,i( x ) indices from its specified goal 
(Cpm,i

*( x )). 

Minimize: ∑
=

−−=
m

1i
ii dwz  (15) 

Subject to: 

( ) iCdC i,pmii,pm ∀=+ ∗−x  (16) 

i0d i ∀≥∈ −X,x  

7. Solving the NLGP model with an appropriate 
optimization method to obtain a compromise 
solution ( ∗x ). 

8. Performing verification experiments in the 
optimum setting acquired in the previous step 
to confirm the achieved results. 

9. Applying the new setting to the process and 
start a statistical process control program to 
maintain the results. 

5. A CASE STUDY 

In this section, we provide a numerical example to 
show the performance of the proposed approach 
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and results will be compared to two other methods 
from the literature. We use the problem presented 
by Montgomery [1] for simultaneous optimization 
of a chemical process. 
     In this problem the aim is to identify process 
settings in order to simultaneously optimize three 
quality characteristics, process yield (Y1), viscosity 
(Y2), and molecular weight (Y3) such that yield is 
maximized, viscosity is set on a specified target, 
and molecular weight is minimized (see Table 1 
for details). 
     Two process parameters, reaction time (x1) and 
reaction temperature (x2), were considered to have 
the maximum effect on these three responses. The 
central composite design (CCD) shown in Figure 3 

was used to assess the relationship between these 
process parameters (Factors) and the selected 
responses. The experimental settings along with 
the data are shown in Table 2. 
     Using multiple regression technique, the 
following models will be achieved for yield, 
viscosity and molecular weight responses, 
respectively: 

21
2
2

2
1

211

xx25.0x00.1x38.1

x52.0x99.094.79Y�

+−−

++=
 (17) 

21
2
2

2
1

212

xx25.1x69.6x69.0

x95.0x16.000.70Y�

−−−

−−=
 (18) 

213 x4.17x1.2052.3386Y� ++=  (19) 

     Now, we solve the problem and compare the 
results to the results obtained from following two 
alternatives: 

1. Derringer and Suich's desirability function 
approach (DS) 

2. Chang and Shivpuri's MODM Approach (CS) 

     We used MS-Excel 97 software for solving the 
problem using each of the three approaches. The 
NLGP model we used for this problem is: 

Minimize: ( )−−−−−− ++= 332211 dwdwdwz  (20) 

TABLE 1. Response Variables. 
 
Dependent Variables    Description    Unit    Type    Lower Bound    Target    Upper Bound    

1Y  Process Yield % HTB 70 79.33* -- 
2Y  Viscosity (cc) NIB 62 65 68 
3Y  Temperature Difference )F(°  LTB -- 2927.21* 3400 

 
* The Target values for 1Y  and 3Y  were determined as suggested in step 4 of the proposed approach. 

 
 

(-1,1) (1,1)

(1,-1)(-1,-1)

(0,0) (1.414, 0)

(0, 1.414)

(-1.414, 0)

(0, -1.414)

1x

2x

 
 
Figure 3 the Central Composite Design for Chemical Process 
Optimization 
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Subject to: 

( )
i0d,

iCdxC

i

*
i,pmii,pm

∀≥

∀=+
−

−

x
 (21) 

     According to this table, the model outperforms 
the other two models with respect to the standard 
deviation uniformly, which is an important issue in 
robust design problems. However, the model does 
not perform equally well in terms of the means. In 
general, these results indicate that the proposed 
approach is capable of providing a relatively better 
solution than the other two approaches in terms of 
the rate of non-conformity (%N/C). Table 4 

compares the rate of non-conformity in responses 
resulted from the proposed approach to those 
obtained from the Derringer and Suich's and Chang 
and Shivpuri's approaches. The algebraic sum for 
the differences of each response is shown in the 
last column denoted by Σ. 
 
 
 

6. CONCLUSIONS 

This paper is concerned with enhancement of 
quality through multi-response optimization. The 
vehicles used to accomplish this goal are a 
common process capability index known as Cpm 

TABLE 2. Experimental Runs. 
 

Natural Variables Coded Variables Responses 
1ξ  2ξ  x1 x2 Y1 (yield) Y2 (viscosity) Y3 (molecular weight) 

80 170 -1 -1 76.5 62 2940 
80 180 -1 1 77.0 60 3470 
90 170 1 -1 78.0 66 3680 
90 1780 1 1 79.5 59 3890 
85 175 0 0 79.5 72 3480 
85 175 0 0 80.3 69 3200 
85 175 0 0 80.0 68 3410 
85 175 0 0 79.7 70 3290 
85 175 0 0 79.8 71 3500 

92.07 175 1.414 0 78.4 68 3360 
77.93 175 -1.414 0 75.6 71 3020 

85 182.07 0 1.414 78.5 58 3630 
85 167.93 0 -1.414 77.0 57 3150 

 
 
 
 

TABLE 5. Optimal Solutions Resulting from the Proposed Approach, the Derringer Method, and the MODM Technique. 

 
%N/C 

Method x1 x2 1Y�  2Y�  3Y�  1�σ  2�σ  3�σ  
1Y�  2Y�  3Y�  

Proposed 
Model 

-0.81 -0.816 77.33 65.20 3075.5 0.31 2.64 184.58 0.00% 25.80% 3.94% 

DS -0.401 -1.414 78.52 65.00 3053.08 0.35 2.97 192.22 0.00% 31.31% 3.59% 
MODM -0.472 -1.414 

 

78.27 64.29 3038.46 

 

0.35 3.00 192.78 

 

0.00% 33.11% 3.04% 
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and goal programming as an optimization 
technique. Although, many optimization 
techniques have been used or developed by 
researchers (see for example, Wurl and Albin [23], 
Del Castillo, Montgomery, and McCrville [24], 
Del Castillo [25], Das [26], Fogliatto and Albin 
[27], and Carlyle, Montgomery, and Runger [28]) 
for optimization purposes but we used goal 
programming because of its flexibility and its� 
applicability to real world engineering problems. 
Using a set of data from Montgomery [1], the 
performance of the proposed model was evaluated 
against two other methods suggested by Derringer 
and Suich [3] and Chang and Shivpuri [15]. The 
results indicated a better performance for the 
proposed model. Future work is necessary not only 
to determine the weights and goals analytically but 
also to provide a methodology that utilizes the 
possible correlation that might be present between 
responses.  
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