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The m etho d of mat che d a sym ptot ic expa nsions, which has bee n used in previousAbstract
studies of steady natural convection flow, is extended here to transient natural convection flow
at high Prandtl number (Pr). Second-order expansion solutions, valid for large Prandtl numbers,
are presented for the transient natural convection flow near a vertical surface which undergoes
a st ep chan ge in te mperat ure. Throughout th e t ransient, the flow is fou nd t o ha ve the sam e
dual-layer structure which is characteristic of the steady flow at high Prandtl number. For large
Prandtl number, the time to steady state is shown to increase proportional to square root of Pr.
The temperature and velocity overshoot, which occurs during the transient at moderate Prandtl
number, is shown to disappear as Pr . Uniformly valid expansions for the velocity and
t emperat ure profiles near the surfa ce are found to be in good agreem ent with t he n ume rica l
solution of the full governing equations for as low as Pr=16. By increase of Prandtl number, the
error because of instability in numerical solution of the full governing equations increases and
the necessity of using singular perturbation techniques become more obvious.
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INTRODUCTION

The t ransient laminar fluid mot ion and heat
transfer resulting from the impulsive heating or
cooling of a vertical surface in a quiescent fluid
has been the subject of a number of previous
stu die s . Fo r bo t h t h e st e p ch a n ge in
temperature for the iso-thermal surface, and the
sudde n applicat ion of a uniform heat flux,
analytical solutions have been obtained [1,2] for
the one dimensional port ion of the transient.
Finit e-difference computational schemes [3,4]
have be e n u sed to pr edict t he t r anspor t

behavior during the entire t ransient, including
both the one-dimensional regime and the later
period, dur ing which the flow adjust s to it s
steady-state two-dimensional form.

Although the se studies have thor oughly
invest iga te d the impo rt an t flow and h eat
t ra nsfe r ph eno mena in t r an si ent n atur al
convection near vertical surfaces, t hey provide
ve ry lit tle information about the syst emat ic
behavior of such flows at high Prandtl number.
The finit e difference calculations which have
been made for these flows, have been at Prandtl
numbers near 1, for gases, or near 7, for water.
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Th e c lo s e d - f o r m s o lu t i o n s f o r t h e
one-dimensional portion of the transient may be
evaluated for any Prandtl number, but they are
valid only for short times. Gebhart [5] presented
solutions for the uniform-flux surface for values
of Pr andtl number up to 1000. H owever, t he
accuracy of these solut ions is limit ed by the
assumpt ion of the integral method. Almost all
experimental dat a on t ransient ver tical natural
convect ion flows have also been from flows in
fluids with Prandtl numbers near either 1 or 7.

The limit ing case solut ions [R ef. 2] when
Prandt l number is taken as infinit y, omit s the
de rivat ive te rm of se cond-or de r in e ne r gy
equation and change it into a partial differential
equat ion of first-order . This reduct ion is only
valid in limiting studies when Prandtl number is
exa ct ly infini t y. Bu t ph ysi ca l ly in som e
applications fluids are employed which have the
property of having high Prandt l number other
than exactly infinity.

The present work is an analysis of t ransient
natural convection in a high Prandtl number
fluid. The analysis is applied to an isothermal
sur face which suddenly changes temperatur e
above or below the ambient. Flows of this type
commonly occur in technological applications. A
high Prandtl number fluid is sometimes used as
a heat sink in elect r ical t ran sformer s. The
sudden application of elect rical power to the
transformer pr oduces a tr ansient buoyancy-
driven flow. Transient flows at high Prandt l
number may al so re sult fr om th e sudde n
addit io n or r e moval of he at in che mical
pr oce ssin g o f h ydr ocar bo n an d sil icon e
polymers, and in thermal energy storage devices.

The analysis used here combines a matched
asymptot ic expansion te chnique [6] with an
explicit finite difference computat ional scheme.
Asymptotic transient profiles are obtained for
the limiting circumstances of Pr .     . Second-order
correct ions ar e also computed so t he results
may be used to predict flow and heat transfer at
moderate values of Pr. It will be shown that the
r esu lt s accur a t e ly pr e di ct t h e flow a nd
temperature field behavior at least in the range
16<Pr< . These results provide a more
complet e pictur e of the manner in which the
heat t ransfer and flow behavior changes with
Prandtl number in these time-dependent flows.

FORMULATIONOF THE PROBLEM

The analysis applies to a flat vert ical plat e
immer sed in an extensive body of quie scent
fluid at a uniform temperature. To initiat e the
tr ansient , t he plat e t emperature is suddenly
raised or lowered to a value different from the
temperature of the fluid.

Th e a n alys is in co r p o r a t e s t he n o n-
dimensional variables of Hellums and Churchill
[7], listed below

(1)

The equat ions governing conservation of mass,
mome ntum and ene r gy, in t e rms of th ese
non-dimensional variables, are given below. The
u su a l bo u n da r y-l a ye r a nd B o u ssin e sq
approximations have been made:

(2)

The initial and boundary conditions are

(3a)
(3b)
(3c)
(3d)
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As , the coefficient of the second
der ivat ive in the ene rgy e quat ion vanishes.
He nce , to obta in a solut ion for lar ge Pr, a
singular perturbat ion technique is needed. It is
t he r e fo r e assu me d th at thr o ugho ut th e
transient, the flow consists of two regions: an
inner region, near the surface, dominat ed by
buoyancy and viscous e ffe ct s, and an outer
re gio n whe re only viscou s and momentum
effects are important. Accordingly, in the inner
re gion , the Y and t ime co or din at e s a r e
stretched as follows

(4)

(5)

Inner expansions for U, V and T are taken to
be

(6)

The inner variables and expansions are chosen
so that, to lowest order, as , the inner
momentum equation ret ains only the viscous
and buoyancy terms.

Writing the governing equations (2) in terms
of the inner coordinates (5) and expansions (6),
and requiring that the equat ions be sat isfied at
each level in powers of , the systems of
equations for inner region are obtained which
are presented in Appendix as Equat ions I , II,
and III.

I n s im il a r fa sh io n , o ut e r s t r e t ch e d
coordinates and expansions are taken to be

(7)

(8)

The scaling and expansions are chosen so that ,
to lowest order, only momentum and viscous
ter ms are r et ained. The tempe rature field is
exponentially small in the outer region and is
ther efore taken as ze ro in the expansion to
O( ).

Substit uting in the same manner as for the
inner equat ions, the systems of equat ions are
obtained for the outer velocity terms which are
presented in Appendix as Equations IV, V, and
VI.

Boundary conditions at the surface ( =0)
and initial conditions for the inner equations are
obtained by subst ituting new variables (5) and
the expan sion s ( 6) into Equat ion s 3a-3c.
Likewise, the boundary conditions far from the
surface and the initial condit ions for the outer
equat ions ar e obtained by subst it ut ing the
relat ions in (7) and (8) into Equat ions 3a, 3b
and 3d.

The outer ( ) boundary conditions
for the inner equations and the inner ( )
boundary conditions for the outer equations are
obta ine d by matching the inne r and oute r
expansions. The method used here is similar to
that described by Van Dyke [8] except that the
x and time dependence of the flow field must be
considered. Since the inner and outer x( ) and
time ( ) scales are equal, the inner and outer
expansions can be matched for fixed and .
Combining the matching condit ions with the
required conditions at = 0, = 0, = 0 and

,the full boundary and initial conditions for
the inner and outer equations are obtained.

CALCULATION    PROCEDURE

The systems of Equat ions I, II , II I and IV, V,
VI together with the corresponding boundary
and initial conditions were solved numerically
using an explicit finite difference scheme. The
value was considered to represent
t h e t o t a l h e ig h t o f t h e p la t e , a n d

were considered to
represent and . This
is equivalent to a value of the Grashof number,

, of at the end of the plate.
The flow region was divided into a grid with

m and n spacings in the X and Y directions. For
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both the inner and outer regions, the values of
m and n used were 20 and 32, re spectively.
Second-order derivatives were written in central
differences, forward differences were used for
first-order derivatives in and , and a
backward difference was used for
derivatives.

The ca lcula tio n pro ce dure gen er at es a
solution by marching for war d in t ime while
matching the inne r and outer e xpansions at
each time step. Beginning with the results from
the last time step, the solution at the next step
was calculat ed first for the lowest-order inner
equat ion s along wit h th eir cor re sp onding
conditions using the newlycalculated necessary
values, the lowest-order outer solution was then
calculat ed for next t ime st ep. This pr ocedur e
were followed to solve the higher order inner
and outer equations. The resulting velocity and
temperature fields were then stored, and the
whole process was repeated to march the entire
pe rturbat ion solut ion forwar d in t ime . The
solution was computed unt il st eady state was
reached using a time step, , of 0.01.

From a series of calculations with different
grid sizes and time st eps, it was calculated that
m=20, n=32 and = 0.01 would yield
acceptable accuracy. Increasing from 0.01
to 0.02 resulted in a change in the velocity and
temperature profiles of less than 2% of their
respective peak values across the layer.

It should be mentioned here that in order to
control our computer code and for the purpose
of comparison, the full governing equations (2)
along with init ial and boundar y conditions (3)
wer e also so lved numer ical ly with similar
procedures as above.

RESULTS AND DISCUSSIONS

In addition to the numerical solution of the full
go ve r n in g e q u a t io n s, t h e f o l lo w in g
one-dimensional analysis can also be used for
the sake of compar ison with the perturbat ion
solutions.

During the initial one-dimensional portion of
the transient, t he V-velocity and X-derivat ive
te rms in the gove rning equat ions are zero.
Without these t erms, the governing equations

and boundary conditions reduce to a line ar
syste m of part ial diffe rent ial equat ions and
boundary condit ions for which closed-for m
solutionsexist. UsingLaplace Transformations,
i t i s e a si l y s h o wn th a t d u r in g t h e
one-dime nsional port ion of the t ransient, the
solutions for governing equations of the inner
and outer regions with corresponding boundary
conditions are given by

(9)

(10)

(11)

(12)

Th e so lu t io n fo r t h e lo we st -o r de r
temperature solution is just the one-dimensional
conduction t ransie nt in a semi-infinit e solid .
The lowest-order inner and outer solut ions for
the velocity, obt ained above, can be combined
using the me tho d of additive comp osit ion,
descr ibed by Van D yke [8], t o obt ain th e
following uniformly valid solut ion for the U
velocity:

(13)
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The uniformly-valid solut ion for U , Equat ion
22, is co mpa re d wit h the cor r esp onding
one -dime nsion al solu t ion o btain ed fr om
governing Equations 2, as following:

(14)

It is seen from (14) that as Pr , these two
solutions are the same. On the other hand, from
the one-dimensional governing Equations 2 and
the ir cor r espon din g in it ial a nd bou nda r y
conditions, we get

(15)

Also from , the

local Nusselt Number from (9) and (15) is

(16)

To obtain the second-order appr oximate
solut ion of two-dimensional composit e solution
which is un if or mly va lid eve ry wh er e , an
asymptot ic matching procedure as before is
used, to get

()

) (17)

where the functions A00, A10, A11, A20, A21,
and A22 ar e pr ese nted in the Appe ndix as
equations (VII).

Fr om the expansion for the te mper atur e
field, the local Nusselt number is related to the
gradients of T0, T1, and T2 at the surface as

(18)

Figure 1. Lowest-order inner velocity profile for Pr = 16,
for two-dimensional (---) and one-dimensional case (- - -).

Figure 2. Lowest order outer velocity profile for Pr = 16,
for two-dimensional (---) and one-dimensional case (- - -).

It can easily be shown that during the init ial
one-dimensional portion of the transient, and at
st e ady st at e , t h e he at t r ansfe r p ara mete r

is a function only of the ratio

.
F igur e 1 shows the lowe st - or de r inne r

ve locity profile for Pr= 16 at the end of the
plate ( X= 100) for two-dimensional (---) and
one-dimensional (- - -) case for various values of
q . These results compare very well for small q
and indicate s the accur acy of our compute r
code. F igure 2 shows the lowest -order outer
velocity profile in the case of two-dimensional
(---) and one-dimensional (- - -) for Pr=16 and
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Figure 3 . Va ria t ion o f t em pe ra t ur e fo r Pr = 16 for
different values of t. Complete numerical solution (---) and
perturbation solution (- - -).

Figure 4 . Lowe st-order in ner ve locity profile for different
values of q for Pr = 2000.

Figure 5 . F ir st-or der in ner velocit y pr ofile for diffe rent
values of q for Pr = 20,000.

for differe nt values of q. F igure 3 shows the
variations of temperature for Pr=16 at the end

Figure 6 . Second-order inner velocity profile for differe nt
values of q for Pr = 50,000.

Fi gure 7. F irs t-orde r oute r velocity profile for different
values of q for Pr = 20,000.

of the plate (X= 100) for the case of complet e
numer ical solution of the equations ( ---) and
perturbation solution (- - -) for different values
of t . F igu r e 4 sh ows th e var ia t i on of
lowest-order inner velocity for Pr=20000 at the
end of plate (X=100) for different values of q.
As it can be seen, by increasing Pr the curves
quickly r each a maximum and then r each a
constant value. Figure 5 shows the variations of
fi rst-or der inne r ve locity at Pr = 50000 for
different values of q. As it is seen these curves
do not int er se ct bu t because of e ffe ct s of
momentum in the inner re gion and for low
values of Pr these cur ve s have int ersections.
Figure 6 shows the variations of second-order
inner velocity at Pr = 50000 for different values
of q. Figure 7 shows the variations of first-order
outer velocityat Pr= 20000 for different values
of q . F igur e 8 sh ows th e va r ia t i on s of
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Figure 8 . Second-orde r outer velocity for different va lues
of q for Pr = 50,000.

Fi gur e 9 . Ve locit y profile for differe nt valu es of t for
Pr = 16. Co m ple t e n u m e r ica l solu t io n ( ---) a n d
perturbation solution (- - -).

second-order outer ve locity at Pr= 50000 for
di ffe r ent va lues of q. F igu re 9 sho ws th e
variat ion of velocity obtained from complet e
numerical solution of the equations (---) and the
pe r turbat ion solut io n ( - - -) at Pr = 16 f or
different values of t and as it is seen these two
cur ve s compar e ve ry well, exce pt n ear the
maximum values of the velocity. The err or in
complete solution of the equations increases by
increase of Prandt l number. F igure 10 shows
the variation of velocity for Pr= 20 (---) and
Pr= 1000 ( - - -) for different values of q using
per turbation methods. By incre ase of Pr the
maximum values of velocity ge ts closer to the
wall and the thickness of the thermal boundary
laye r de cr e ase s. F igur e s 11-13 sh ow th e
gr adie n t s o f T 0, T 1, a nd T 2 on th e wall,

Fi gure 10 . Velocity profile for differe nt va lu es of q for
Pr = 20 (---), Pr = 1000 (- - -).

Figure 11 . Gradient of T0 on the wall at X = 100(---) and
X = 60 (- - -), for Pr = 20,000.

Fi gure 12 . Gra die nt of T 1 on the wa ll a t X = 100 (---)
and X = 60 (- - -) for Pr = 20,000.

respect ively. Comparing each figure at X = 60
and X = 100 is inter est ing. F igur e 14 shows
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Figure 13 . Gradient of T 2 on the wa ll a t X = 100 (---)
and X = 60 (- - -) for Pr = 20,000.

Figure 14. versus at X = 100
and X = 60 for Pr = 50,000 (---) and Pr = 100,000 (- - -).

versus at Pr=50000 (---)
and Pr = 100000 ( - - - ) for X = 60 and
X = 100. It is seen that local Nusselt number is
greater for bigger X and this is the same as the
Ostrach [9] results.

CONCLUSIONS

The results of the present study indicate that, at
high Prandt l number, the tr ansient natural
convect ion flow ne ar a ve rt ical isother mal
surface is also characterized by two layers. Here
the ve locity bou nda r y la ye r t e nds to be
somewhat larger due to large kinematic viscosity
relative to thermal diffusivity. The motion of the
outer layer, however, seems to be caused by the

drag force exerted by the inner layer, not due to
the buoyancy itself. This dual-layer structure is
characteristic of the transient flow which results
fr om a ste p change in the t empe rature of a
vertical isothermal surface. Using the method of
matched asymptotic expansions, and matching at
each time step and x locat ion, it is possible to
numerically calculate time-dependent expansion
solutions for the inner and outer regions. These
may be combined to fo rm uniformly-valid
time-dependent solutions for any lar ge Prandtl
number. The three-t erm composite expansions
wer e found to be in good agreement with the
nume rically calculat ed solut ion of the full
equations for Prandtl number at least as low as
16.

As Pr , the overshoot in the local
Nusselt number disappears. This suggests that at
large Pr, the Nusselt number may be calculated
with fair accuracy during the transient by using
the value pr edicte d by the one-dimensional
closed-form solution unt il it s value equals the
st e ady-st a t e valu e. Aft er th at poin t , t h e
steady-state value would be used.

In the modified form used here, the method
of matched asymptotic expansions proved to be
an effe ct ive t echnique s f or analysis of the
transient natural convection flow resulting from
a step change in surface temperature.

NOMENCLATURE

functions determined by matchingAKJ BKJ
Grashof numberGr x
acceleration of gravityg
local heat transfer coefficienthx
Nusselt numberNux
Prandtl numberPr
timet
dimensionless temperatureT
inner region temperatureTi
wall temperatureTw
fluid temperatureTÈ
dimensionless velocityU, V
inner region velocityU i, Vi
outer region velocityUo, Vo
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component s of velocity Parallel andu, v
normal to the surface
dimensionless coordinatesX, Y
vertical and horizontal coordinatesx, y

GREEK

Perturbation Parametere
Coefficient of thermal expansionb
inner stretched Coordinateh
stretched time variableq
Kinematic viscosityn
outer stretched coordinatex
dimensionless timet

APPENDIX

:

(I)

:

(II)

:

(III)

:

(IV)

:

(V)

:

(VI)
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