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Abstract The method of matched asymptotic expansions, which has been used in previous
studies of steady natural convection flow, is extended here to transient natural convection flow
a high Prandtl number (Pr). Second-order expansion solutions, valid for large Prandtl numbers,
are presented for the transient natural convection flow near a vertica surface which undergoes
astep changein temperature. Throughout thetransient, the flow isfound to have the same
dua-layer structure which is characteristic of the steady flow a high Prandtl number. For large
Prandtl number, the time to steady state is shown to increase proportional to square root of Pr.
The temperature and velocity overshoot, which occurs during the transient a moderate Prandtl
number, is shown to disappear as Pr : 2. Uniformly valid expansions for the velocity and
temperature profiles near the surface are found to be in good agreement with thenumerical
solution of the full governing equations for as low as Pr=16. By increase of Prandtl number, the
error because of instability in numerical solution of the full governing equations increases and
the necessity of using singular perturbation techniques become more obvious.
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INTRODUCTION

The transient laminar fluid motion and heat
transfer resulting from the impulsve hesating or
cooling of a vertica surface in a quiescent fluid
has been the subject of anumber of previous
studies. For both the step change in
temperature for the iso-thermal surface, and the
sudden application of a uniform heat flux,
analytical solutions have been obtained [1,2] for
the one dimensional portion of the transient.
Finite-difference computational schemes|3,4]
have been used to predict the transport

International Journal of Engineering

behavior duringthe entiretransient, including
both the one-dimensional regime and thelater
period, during which the flow adjuststo its
steady-state two-dimensiona form.

Although these studies have thoroughly
investigated the important flow and heat
transfer phenomena in transient natural
convection near vertical surfaces,they provide
very little information about the systematic
behavior of such flows at high Prandtl number.
Thefinite difference cal culations which have
been made for these flows, have been at Prandtl
numbers near 1, for gases, or near 7, for water.
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The closed-form solutions for the
one-dimensiona portion of the transient may be
evaluated for any Prandtl number, but they are
vaid only for short times. Gebhart [5] presented
solutions for the uniform-flux surface for values
of Prandtl number up to 1000. However, the
accuracy of these solutionsis limited by the
assumption of the integral method. Almost all
experimental dataontransient vertical natural
convection flows have also been fromflowsin
fluids with Prandtl numbers near either 1 or 7.

The limiting case solutions[Ref. 2] when
Prandtl number istaken asinfinity, omitsthe
derivative term of second-order in energy
equation and change it into a partial differential
equation of first-order. Thisreduction isonly
vdid in limiting studies when Prandtl number is
exactly infinity. But physically in some
goplications fluids are employed which have the
property of having high Prandtl number other
than exactly infinity.

The present work isan analysisof transient
natural convection in a high Prandtl number
fluid. The analysisis applied to an isothermal
sur face which suddenly changes temperature
above or beow the ambient. Flows of this type
commonly occur in technological applications. A
high Prandtl number fluid is sometimes used as
a heat sink in electrical transformers. The
sudden application of electrical power to the
transformer produces a transient buoyancy-
driven flow. Transient flows at high Prandt|
number may also result from the sudden
addition or removal of heat in chemical
processing of hydrocarbon and silicone
polymers, and in thermal energy storage devices.

T he analysisused here combinesa mat ched
asymptotic expansion technique [6] with an
explicit finite difference computational scheme.
Asymptotictransient profilesare obtained for
the limiting circumstances of Pr ..« . Second-order
correctionsare also computed so the results
may be used to predict flow and heat transfer at
moderate values of Pr. It will be shown that the
results accurately predict the flow and
temperature fidd behavior at least in the range
16<Pr< @. These results provide a more
complete picture of the manner in which the
heat transfer and flow behavior changeswith
Prandtl number in these time-dependent flows.
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FORMULATIONOF THE PROBLEM

The analysis appliesto a flat vertical plate
immersed in an extensive body of quiescent
fluid at auniformtemperature. Toinitiate the
transient, the plate temperature is suddenly
raised or lowered to a vdue different from the
temperature of the fluid.

The analysis incorporates the non-
dimensional variables of Hdlums and Churchill
[7], listed below

£ —wfreld, AT e

=1 (vgih AY) 7 8

s Aocr1 100

i ey 153 : ]
Y =_'!,:' [ g-;"{[ &f] =J;t—_l:-_;|:f'i.!'.-'.:i (1)

LY ]

Theequationsgoverningconservation of mass,
momentum and energy, in terms of these
non-dimensiona variables, are given below. The
usual boundary-layer and Boussinesq
agpproximations have been made;
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The initid and boundary conditions are

t—Q : U—V-TF,—0 (32)
X-0:U-V-T,-0 (30)
Y—0:0—-k-0,7T,—1 (3¢)
Y—e: U—T,—0 (3d)
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As Pr—w, the coefficient of the second
derivative in the energy equation vanishes.
Hence, to obtain a solution for large Pr, a
singular perturbationtechniqueisneeded.Itis
therefore assumed that throughout the
transient, the flow consists of two regions: an
inner region, near the surface, dominated by
buoyancy and viscous effects, and an outer
region where only viscous and momentum
effects are important. Accordingly, in the inner
region, the Y and time coordinates are
stretched as follows
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Inner expansionsfor U,V and T are taken to
be
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The inner variablesand expansonsare chosen
so that, to lowest order, as Pr — ==, the inner
momentum equation retainsonly the viscous
and buoyancy terms.

Writing the governing equations (2) in terms
of the inner coordinates (5) and expansons (6),
andrequiring that the equationsbe satisfied at
each level in powers of &, the systems of
equationsfor inner region are obtained which
are presented in Appendixas Equationsl, 1,
and 1l1.

In similar fashion, outer stretched
coordinates and expansons are taken to be
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Thescalingand expansionsare chosen so that,
to lowest order, only momentum and viscous
termsare retained. The temperature field is
exponentially small in the outer region and is
therefore taken aszero in the expansion to
O(&).

Substituting in the same manner as for the
inner equations, the systems of equationsare
obtained for the outer veocity terms which are
presented in Appendix as Equations 1V, V, and
VI.

Boundary conditions at the surface (4=0)
and initid conditions for the inner equations are
obtained by substituting new variables(5) and
the expansions (6) into Equations 3a-3c.
Likewise, the boundary conditions far from the
surface and theinitial conditionsfor the outer
equations are obtained by substituting the
relationsin (7) and (8) into Equations3a, 3b
and 3d.

The outer (¥ — ) boundary conditions
for the inner equations and the inner (£ — 0)
boundary conditions for the outer equations are
obtained by matching the inner and outer
expansions. The method used here is smilar to
that described by Van Dyke [8] except that the
x and time dependence of the flow fidd must be
considered. Since the inner and outer x(X") and
time (H) scales are equa, the inner and outer
expansons can be matched for fixed X and #.
Combining the matching conditionswith the
required conditions at#= 0, ¥ = 0,4 = Oand
# = o the full boundary and initia conditions for

o =

the inner and outer equations are obtained.

CALCULATION PROCEDURE

The systemsof Equationsl|, II,Illand IV, V,
V1 together with the corresponding boundary
andinitial conditionswere solved numerically
using an explicit finite difference scheme. The
vaue X,...— L00 was considered to represent
the total height of the plate, and
Hoor — &wmer — 16 Were  considered  to
represent - and F =w. This
is equivalent to a vaue of the Grashof number,
Gr,, Of 10% at the end of the plate.

The flow region was divided into a grid with
m and n spacings in the X and Y directions. For
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both the inner and outer regions, the vaues of
m and n used were 20 and 32, respectively.
Second-order derivatives were written in central
differences, forward differenceswere usedfor
first-order derivatives in 5. & and #, and a
backward difference was used for X
derivatives.

The calculation procedure generates a
solution by marching forward in time while
matching the inner and outer expansions at
each time step. Beginning with the results from
the last time step, the solution at the next step
wascalculatedfirst for the lowest-order inner
equations along with their corresponding
conditionsus ngthe newly calcul ated necessary
values, the lowest-order outer solution wasthen
calculated for next time step. Thisprocedure
were followed to solve the higher order inner
and outer equations. The resulting velocity and
temperature fieldswere then stored, and the
whole process was repeated to march the entire
perturbation solution forward in time. The
solution was computed until steady state was
reached using a time step, A &, of 0.01.

Fromaseriesof calculations with different
grid sizesandtime steps it wascalculated that
m=20, n=32 and A& = 0.01 would yidd
acceptable accuracy. Increasing A & from 0.01
to 0.02 resulted in a change in the veocity and
temperature profilesof lessthan 2% of their
respective peak vaues across the layer.

It should be mentioned here that in order to
control our computer code and for the purpose
of comparison, the full governing equations (2)
alongwith initial and boundary conditions(3)
were also solved numerically with similar
procedures as above.

RESULTSAND DISCUSSIONS

In addition to the numerical solution of the full
governing equations, the following
one-dimensional analysiscan also be used for
the sake of comparison with the perturbation
solutions.

During the initid one-dimensional portion of
thetransient, the V-velocity and X -derivative
terms in the governing equations are zero.
Without theseterms, the governing equations
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and boundary conditionsreduce to a linear
system of partial differential equationsand
boundary conditions for which closed-form
olutionsexist. UsingL aplace Transformations,
it is easily shown that during the
one-dimensional portion of thetransient, the
solutionsfor governingequationsof theinner
and outer regions with corresponding boundary
conditions are given by

T, — crfe L"—h} , T,—T,—0 (9
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The solution for the lowest-order
temperature solution is just the one-dimensiona
conduction transient in a semi-infinite solid.
The lowest-order inner and outer solutionsfor
the velocity, obtained above, can be combined
using the method of additive composition,
described by Van Dyke [8], to obtain the
following uniformly valid solution for the U
velocity:
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The uniformly-valid solution for U, Equation
22, is compared with the corresponding
one-dimensional solution obtained from
governing Equations 2, as following:

U lnVied oy 1y (14)
UCr,Y,ed

It is seen from (14) that as Pr : e, these two
solutions are the same. On the other hand, from
the one-dimensional governing Equations 2 and
their corresponding initial and boundary
conditions, we get

=> T, (Y,z} —erfc [ Y } 15
i 24/ Fr

Also from ¢"= KT kAT, the
a4

local Nussalt Number from (9) and (15) is
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To obtain the second-order approximate
solution of two-dimens onal compositesolution
which is uniformly valid every where, an
asymptotic matching procedure asbefore is
used, to get

Grq®
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where the functions A00, A10, Al1l, A20, A21,
and A22 are presented in the Appendix as
equations (VI1).

From the expansion for the temperature
fied, the local Nussalt number is related to the
gradients of TO, T1, and T2 at the surface as
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Figure 1. Lowest-order inner velocity profile for Pr = 16,
for two-dimensiona (---) and one-dimensional case (- - -).
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Figure 2. Lowest order outer velocity profile for Pr = 16,
for two-dimensiona (---) and one-dimensional case (- - -).

It can easily be shown that during the initial
one-dimensiona portion of the transient, and at
steady state, the heat transfer parameter

Nt /Gr.*is afunction only of the raio

Fl,l'rx]!.’ lf‘i .

Figure 1 shows the lowest-order inner
velocity profile for Pr= 16 at the end of the
plate (X=100) for two-dimensional (---) and
one-dimensiona (- - -) casefor various values of
g . These results compare very well for smal g
and indicates the accuracy of our computer
code. Figure 2 showsthe lowest-order outer
velocity profile in the case of two-dimensional
(---) and one-dimensionad (- - -) for Pr=16 and
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Figure 3. Variation of temperature for Pr = 16 for
different values of t. Complete numerica solution (---) and
perturbation solution (- - -).
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Figure4.Lowest-order inner velocity profile for different
vaues of q for Pr = 2000.
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Figure 5. First-order inner velocity profile for different
vaues of g for Pr = 20,000.

for different values of q. Figure 3 showsthe
variations of temperature for Pr=16 at the end
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Figure6. Second-order inner velocity profilefor different
vaues of q for Pr = 50,000.
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Figure 7. First-order outer velocity profile for different
vaues of q for Pr = 20,000.

of the plate (X=100) for the case of complete
numerical solution of the equations (---) and
perturbation solution (- - -) for different values
of t. Figure 4 shows the variation of
lowest-order inner velocity for Pr=20000 at the
end of plate (X=100) for different vaues of Q.
Asit can be seen, byincreasing Pr the curves
quickly reach a maximum and then reach a
constant value. Figure 5 shows the varidaions of
first-order inner velocity at Pr=50000 for
different values of (. As it is seen these curves
do not intersect but because of effects of
momentum in the inner region and for low
values of Pr these curveshave intersections.
Figure 6 showsthe variationsof second-order
inner velocity at Pr=50000for different values
of g. Figure 7 shows the variaions of first-order
outer velocityat Pr= 20000 for different values
of q. Figure 8 shows the variations of
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Figure8. Second-order outer velocity for different values
of g for Pr = 50,000.
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Figure9. Velocity profile for different values of t for
Pr = 16. Complete numerical solution (---) and
perturbation solution (- - -).

second-order outer velocity at Pr= 50000 for
different values of . Figure 9 shows the
variation of velocity obtained from complete
numerical solution of the equations (---) and the
perturbation solution (- - -) at Pr=16 for
different values of t and as it is seen these two
curves compare very well, except near the
maximum valuesof the velocity. Theerrorin
complete solution of the equations increases by
increase of Prandtl number. Figure 10 shows
the variation of velocity for Pr= 20 (---) and
Pr=1000 (- - -) for different values of q using
perturbation methods. By increase of Pr the
maximum values of velocity gets closer to the
wall and the thickness of the therma boundary
layer decreases. Figures 11-13 show the
gradients of Ty, T4, and T, on the wall,
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Figure 10. Velocity profile for different values of q for
Pr = 20 (---), Pr = 1000 (- - -).
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Figure11. Gradient of TO on the wall & X = 100(---) and
X = 60 (- - -), for Pr = 20,000.
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Figure 12. Gradient of T1 on the wall at X = 100 (---)
and X = 60 (- - -) for Pr = 20,000.

respectively. Comparing each figureat X = 60
and X = 100 isinteresting. Figure 14 shows
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Figure 13. Gradient of T2 on the wall at X = 100 (---)
and X = 60 (- - -) for Pr = 20,000.

L) ]

23 FreSGI0G
Fr=1L0o00

Pl ck]

2.3t

i " A 400 adaa TIL]L.rI.';'
Figure 14. Na, fGr, 4 versus ¢ /X 12 & x = 100
and X = 60 for Pr = 50,000 (---) and Pr = 100,000 (- - -).

Nut, fGre versus ¢/x 1% at Pr=50000 (---)

and Pr = 100000 (- - - ) for X = 60 and
X = 100. It is seen that local Nussdlt number is
greater for bigger X and this is the same as the
Ostrach [9] results.

CONCLUSIONS

The results of the present study indicate that, at
high Prandtl number, the transient natural
convection flow near a vertical isothermal
surface is aso characterized by two layers. Here
the velocity boundary layer tends to be
somewhat larger due to large kinematic viscosity
relaive to thermal diffusvity. The motion of the
outer layer, however, seems to be caused by the
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drag force exerted by the inner layer, not due to
the buoyancy itsef. This dua-layer structure is
characteristic of the transient flow which results
from a step change in the temperature of a
vertical isothermal surface. Using the method of
matched asymptotic expansions, and matching at
each time step and xlocation, it ispossible to
numericaly calculate time-dependent expansion
solutions for the inner and outer regions. These
may be combined to form uniformly-valid
time-dependent solutionsfor any lar ge Prandtl
number. Thethree-termcomposite expansions
wer e found to be in good agreement with the
numerically calculated solution of the full
equations for Prandtl number at least as low as
16.

As Pr » e, the overshoot in the loca
Nussalt number disappears. This suggests that at
large Pr, the Nussdlt number may be calculated
with fair accuracy during the transient by using
the value predicted by the one-dimensional
closed-form solution until itsvalue equalsthe
steady-state value. After that point, the
steady-state vaue would be used.

In the modified form used here, the method
of matched asymptotic expansions proved to be
an effective techniquesfor analysis of the
transent natural convection flow resulting from
a step change in surface temperature.

NOMENCLATURE

Ak Bky functions determined by matching
Gry Grashof number

g acceleration of gravity

hy local heat transfer coefficient
Nuy Nussat number

Pr Prandtl number

t time

T dimendonless temperature
T inner region temperature
Tw wal temperature

Te flud temperature

u,Vv dimensionless velocity

Ui, Vi inner region veocity
outer region velocity
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