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A bi-criteria optimization is considered whose objectives are the maximization of theAbstract
load sustained by a structure and the minimization of the structure's volume. As the objectives
are conflicting, the solution to the problem is of the Pareto type. The problem is elaborated
for a thin-walled column of cruciform cross-section, prone to flexural and torsional buckling. A
numerical example is also presented.
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INTRODUCTION

The major ity of the st ructural opt imizat ion
problems presented in the literature [2,5,12] are
single -cr ite r ion ones with the object ives of
e ithe r th e maximiza t ion of the st ru ct ure ' s
carrying capacity or the minimization of its cost
or volume. When searching for the strongest
st ruct ure (Problem 1), it s co st o r ma te r ia l
volume is predetermined and kept constant .
When, on the other hand, the minimization of
the structure ' s cost or volume is carr ied out
(Problem 2), then the bearing capacity of the
structure or its external load is predetermined
and kept constant.
The a im of th is pape r is t o conside r a

bi-criteria optimization problem that combines
th e two above men t ioned p roblems. More
specifically the combined problem is to find the
structure that, within the frames of various side

and behavio ra l con st r ain t s, wou ld be t h e
st rongest and would have the least possible
volume.
Cle a r ly, t h e demands o f t h e maximum

strength and the minimum material volume are
conflicting and, therefore, the optimum solution
to the problem, in the ordinary sense of the
word, does not exist . Instead, the problem can
be ap p r o a ch e d by ap p lyin g t h e P a r e t o
optimality [4,13].
Pareto solutions usually constitute a large set

of designs whose use fu lness can be ranked
according to one or more addit ional crit eria.
Such a ranking is carried out in this paper, and
the solution to the problem, as understood in
this paper, is the Pareto optimum whose rank,
according to an adopted criterion, is the highest.
Although, as stated earlier, the majority of

structural optimization problems are formulated
a s s i n g l e - c r i t e r io n o n e s , va r ie t y o f
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mult ip le -cr it e r ia problems have also be en
stated, solved and published in the literature [1,
3,4,6,7,13]. In most o f t h e se pape r s, t h e
objective functions adopted by the authors were
the structure's volume and displacements of the
se lected poin t s, or t he allowable load and
displacements.
L it t l e wo r k is r e p o r t e d co n ce r n in g

multi-criterion optimization with the objective
functions reoriented towards the maximization
of the allowable load applied to the structure
and the minimization of its volume [10,11]. Such
a type of the reoriented bi-criterion problem is
presented in this paper.
The procedure followed is as follows. First

the bi-criterion problem is stated more formally
and the adopted cr iter ion for ranking Pare to
solution is described. Then, the same problem is
specified for a thin-walled column of cruciform
cross-section. And finally, a numerical example
is solved.

GENERAL FORMULATIONOF THE
PROBLEM

Consider a structure whose material, topology
and loading pat tern (but not the value of the
load facto r) are known and whose ove ra ll
ge ome t ry, a s we ll a s t h e cr o ss-se ct ion a l
dimensions are specified by a set of preassigned
parameters and by a set x of design variables x1,
x2, ..., xn. Le t the feasible domain D of the
design var iable s be de lineated by m side and
behavioral inequality constraints gi(x) À 0. The
problem is to find such feasible design variables
that describe the structure capable of sustaining
possible the largest load, using possibly the least
amount of mater ia l. Since the object ives are
conflict ing, there exist only Pareto opt imum
solutions x* to the problem.
The solution x* û D is a Pareto solution to

the problem considered if and only if there is no
such xûD which gives simultaneously greater
or equal (Â) allowable external load and less or
equal (À) volume than x* does, and additionally
makes at least one of the two relations: Â and
À, a sharp inequality.
Most common is t he e xist ence o f many

Pareto solutions for any bi-criterion problem,
from which , usually, one or more so called
preferred solutions `x* could be selected. The
preferred solution is the one which satisfies an
adopted additional criterion.
Our aim is just to de termine the preferred

Pareto opt imum solution(s)`x* , which can be
stated more formally as follows: find `x*ûD that
maximizes load factor f1( x) , min imizes t he
st ruct ure ' s vo lume f2(x) , and sa t isfie s th e
adopted crit e rion for being classified as the
preferred solution.
Before stating the crit erion of pre fe rence

that will be used in this paper, let us introduce
two performance funct ions f'1( x) and f'2( x) ,
defined as follows:
f'1(x)=100[f 1(x)-f1max]/(f1min-f1max)
f'2(x)=100[f 2(x)-f2min]/(f2max-f2min)
where f1max and f1min are the maximum and
minimum values, respectively, of the load factor
function f1(x) for xûD, f2max and f2min are the
maximum and minimum values, respectively, of
the structure's volume function f2(x) for xûD.
Each of the performance functions map the

design var iables space (DVS) 0, x1, ... , xn into
the pe rformance function space (PFS) 0'f'1f'2.
Thus, each point xûDVS has its image x'û PFS,
each Pareto solution x*ûDVS is mapped into its
image x*' in PFS, and the whole feasible domain
D is mapped into its image set D'.
Consider a specific point x'ûPFS, denoted

further by x'I, whose coordinates f'1 and f'2 (the
values of the performance functions) are both
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equal to zero. Z ero coordinates indicate that
th e object ive funct ion s f1(x) and f2( x) a re
simu lt ane ously be st fu lfille d by a ce r ta in
hypothetical point x1ûDVS.
However, such a poin t xI, representing an

idea l so lu t ion , does not e xist becau se t he
object ive s f1( x) and f2(x) ar e con flict ing.
Nevertheless, despite non-existence of the point
xI, it is convenient to consider its counte rpart
x'IûPFS and t reat it as a re ference point in
ranking the Pareto solutions. The ranking can
be performed in accordance with the following
criterion.
The Pareto solution x*IûDVS is deemed to

be be t t e r t h an Pare t o so lu t ion x*2 if t h e
distance, measured in PFS, between the images
x*1', and x'I is smaller than the distance between
x*2' and x'I.
I n t h e case o f t h e bi-cr it e r ia p roblem

considered in the paper, the distance between
x*' and x'I is given by

r = ¡f'1(x*)2 + f'2(x*)2

Pareto solution x* is treated as the preferred
one (denoted furthe r by `x*) if the distance
between it image `x*' and x'I is the least of the
distances between the images x*' of other Pareto
solutions and point x'I.
The problem out lined above will now be

specified for the optimization of a thin-walled
column of cruciform cross-section.

COLUMN OPTIMIZATION

Consider a pinned-pinned column of length L,
of the thin-walled cruciform cross-section shown
in
F igure 1, subjected to a cent ral load P . The
column, due to it s cross-sectional shape and
dimensions ( tÀL), is prone to flexural and
torsional buckling [14].
The flexural buckling load, PFB, expressed in

Figure 1. The cross-section of a column.

t erms of dimensionle ss quant it ies x= t /b and
h= b/L is equal to PFB= p2EL2h4x(1+ x2-x3) /12
while the torsional buckling load, PTB, is given
byPTB= 2EL2h2x3(2-x)/[(1+ n)(1+ x2-x3)],where
E and n denote the modules of e lasticity and
Poisson's ratio, respectively.
In some circumstances, yield of the column's

mater ial may occur be fore or simultaneously
with buckling. The yield force, PY, is given by
PY = sYA = sYL2h2x (2-x) , whe re sY is t he
yield stress and A is the cross-sectional area of
the column.
The typical single -crit e r ion opt imization

problems that can be formulated with reference
to the above column are as follows.

For a given material volume V1Problem 1.
and prescribed column's length L, find x and h
that in the feasible domain D maximize the load
P applied to the column.

Problem 2. For a given load P and column's
le ngth L , find x and h t h a t min imize t he
column's volume V in the feasible domain D.
Formally, the two problems can be stated in
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the following manner:

Problem 1. F ind x = {x1 x2}= {x h} t ha t
maximizes f1(x)=P=min(P FB,PTB,PY) subject to
g1( x) = V 1-L 3h2x( 2 -x) = 0 ( vo lume is k e p t
constant)

íg2(x) = xmin-x À 0
à
àg3(x) = x-xmax À 0
¯ (side constraints)
®g4(x) = hmin-h À 0
à
îg5(x) = h-hmax À 0

Problem 2. Find x = {x1 x2}={ x h}
that minimizes f2(x)= V = L3xh2(2-x) subject to
g'1(x)= P-min(PFB, PTB, PY)= 0 ( the applied
load is kept constant)
g'2(x) = xmin-xÀ0
g'3(x)= = x-xmaxÀ0 (side constraints)

g'5(x) = h-hmaxÀ0g'4(x) = hmin-hÀ0
The bi-criterion problem, suggested in this

paper, specified for the column considered, is to
find x and h that make the column possibly the
st rongest , using possibly the least amount of
material.
St a t ing it fo rma lly, t h e p r oblem is t o

determine `x* = {`x* `h*} that constitutes the
preferred solution within the Pareto solutions to
the bi-criterion problem:
find x = {x1 x2} = {x h} that
maximizes f1(x)=min(P FB, PTB, PY),
minimizes f2(x)= L 3 h2x(2-x) , sa t isfying t he
constraints g2(x), g3(x), g4(x) and g5(x).
The problem can be solved in a var ie ty of

ways. O ne op t ion wou ld be the u se of t he
weighting method [4].
The weighting method transforms the vector

optimization problem into the scalar problem
whose so lu t ion co incides wit h the Pa re t o
solu tion to the or iginal problem. The scalar
problem consists in finding the minimum point
x* of a single-valued object ive funct ion z(x) ,
fo rme d a s t h e sum o f p r o du ct s wif i( x) ,
i= 1 ,2 , . . . ,n , o f n o n -n e ga t ive we igh t in g

coe fficien ts wi' s and the object ive funct ions
fi(x) 's. The weighting coefficients are , usually,
normalized so that õwi=1. Consequently, in our
bi-cr it e r ion case , z( x) wou ld be w1f1( x) +
w2f2(x) = w1f1(x) + (1-w1)f2(x).

The scalar minimization of z(x), carried out
for various values of weighting coefficients wi,
leads to creating a set of Pareto solutions x*.
The solu t ions obt ained are , subsequen t ly,
subjected to a ranking procedure, pe rformed
according to an adopted preference criterion.
The crit erion may be, for example, the above
mentioned criterion of the minimum distance r
of the image x*, of the Pareto solution x* from
the ideal so lution's image xI', measured in the
objective functions space Of1f2.
Another option, well suited for solving the

problem posed in th is paper , is to determine
and plot the contour lines of functions f1(x) and
f2(x). Their inspection , accompanied by the
inspection of the directions of gradient vectors

ØØ
êf1 and êf2 pe rmit s, as will be shown in the
numerical example, to recognize easily the set
o f P a r e t o so lu t io n s x* in D . Ne xt , t h e
recognized Pareto solutions x* are subjected to
ranking, carr ied out in accordance with the
cr it e r ion of the minimum distance r of the
image x*' from xI' in the objective function space
Of1 ' f2 ' or performance function space O ' f1 ' f2 ' .
T h e p r o b le m can a lso be so lve d by

minimization, in the design variable space, of a
scalar  fu  nctio  n  r(x)= ¡f 1'(x)2+ f2'(x)2, xûD, that
describes the distance of any feasible design's
image (Pareto solutions' x*, included) from xI'.
The numerical problem that follows is solved by
using the last two methods.

Numerical example. The problem is solved
for the fo llowing data: E= 205 GPa, n= 0.3,
L = 3 . 0 m , sY= 35 0 M P a , xmin= 0 . 0 1 5 ,
xmax=0.055, hmin=0.025, hmax=0.075.
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The objective functions f1(x) and f2(x) for
the above data are of the form
f1(x) = min{1.5174*106h4x(1+ x2-x3), 2.8385*106
h2x3(2-x)/(1+ x2-x3); 3150h2x(2-x)}
f2(x) = 27.0h2x(2-x).
The feasible domain and contour lines of the

functions f1(x) and f2(x) are shown in Figure 2.
Examination of Figure 2 indicates that within

rectangle CDEF the contour lines of f1(x) and
f2(x) are parallel which means that the gradientØØ
vectors ê f1 and ê f2 have the same directions.
For any poin t xûCDEF the increase of the
value of f1(x) is possible in any direction whichØ
makes an angle aû(-p/2, p/2) with vector êf1,
while the decrease of f1(x) is possible only inØ
the direction forming with vector -êf2 an angle
bû (-p/2, p/2). Since aúb is an empty set, there
exists no such a direction from any p o in t xû
CDEF which would allow for simultaneous
i n c r e a se o f f 1(x) and decrease of f2(x).
Consequently, any point xû CDEF is the
Pareto solution.
Let us now examine ridge BC of funct ion

f1(x) . F rom any po in t x o f t h e r idge , t h e
incre ase o f f1(x) can be obtained if a step is
made in the direction contained in the cone of
angle g, (g< p), formed by the tangents to the
contour lines of f1(x) at x belonging to the
ridge. At the same time, the decrease of f2(x)
can be obtained if a step is made from x in the
direction that forms an angle bû(-p/2, p/2) with
the negative gradient of f2(x). Since gúb= f,
there is no such a direction along which a step
made would simultaneously increase f1(x) and
decrease f2(x). Thus, any xû BC is the Pareto
solution.
By similar reasoning, supplemented by the

e ffect of the const rain t g2(x)=0, one can also
find t h at a ll o f th e poin t s x be longing t o
segment AB are the Pare to solu tions to the

problem.
Among the dete rmined Pare to solut ions,

t h e r e a r e two wh ich , a t t h e same t ime ,
const itu te so lu t ions to the single -cr it e r ion
optimizat ion problems. These solu t ions are
represented in F igure.2 by points E (x= 0.055,
h= 0 . 0 75 ) a n d A ( x= 0 . 0 15 , h= 0 .0 2 5 ) ,
respectively.
From the design variable space, le t us now

move to the performance function space Of1'f2'.
The image of the feasible domain D (area

AHEG) in the pe rformance funct ion space
O'f1'f1' is presented in Figure. 3. The collection
o f p o in t s a lo n g t h e cu r ve A 'B'C'F'D'E'

represents the image of the Pareto solution set.
The poin t clo sest t o t h e o r igin O ' o f t h e
reference frame, denoted in Figure 3 by letter
Z ', is an image of the preferred solutions. In the
DVS, the preferred solutions are represented by
t h e po in t s be lon gin g t o lin e PR , who se
e xt r emit ie s P and R h ave t he fo llowing
coordinate s (0.03333, 0.06792) and (0.03780,
0.06386), respectively.
For all the preferred solutions `x*, the values

o f t h e obje ct ive fun ct ion s a re t h e same :
f1(`x*)=0.953 MN and f2(`x*)=0.00816m 3.
Comparing the maximum load sustained by

the preferred design `x* and its volume with the
P and V pertaining to other characteristics of
the feasible designs, it can be found that P(`x*)
= 0.953 MN= 0.503 f1max= 0.503(xE)=
107.207*f1min = 107.207P(xA), V(`x*) =
0.00816m3 = 1.991 f2min = 1.991V(xA) = 0.502
f2max = V(xE).
The present numerical example has also

been solved by compute r minimizat ion of a
scalar function r(x) = r(x, h) = ¡f'1(x)2 + f'2(x)2,
carried out in the design variable space. The
results obtained are visualized in Figure 4, using
the MATLAB 3-D graphics [8]. The Figure 4,
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Figure 2. The feasible domain and contour lines of the objective functions f1(x) and f2(x).
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Figure 3. The image of the feasible domain in the performance function space.

shows the surface representing function r(x, h)
and the shade map of r(x, h). The darkest
region of the map refers to the set of the
preferred solutions x*.

CONCLUDING REMARKS

Although structural optimization problems are
by nature multiple-criteria, they are usually not
treated as such. Designers frequently reduce
them to single-crit er ion ones, choosing most
often as the objectives either the maximization

of the structure 's strength or the minimization
of the structure 's cost . The main reason is the
relative complexity of the solution procedures
for multi-criteria problems.
Avoidance of formulating the optimization

problems as multi-criteria ones in many cases is
not justified. Firstly,multi-criteria formulations
be t te r re fle ct pract ical design rea lity th an
single-criterion problems do and; secondly, the
computat ions involved in solving the former
problems might not necessarily be complex. This
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Figure 4. The surface representing function r(x,h) and shade map of r(x,h).

is especially true when both the number of the
object ive funct ions and the number o f the
de sign var iab le s are kep t low. Though t he
problem presented here is only bi-crit eria, it
takes in to account quite e ssential object ives
such as the maximization of the load factor for
th e st ruct ure and the minimizat ion o f t he
structure's volume. By formulating the problem
in terms of two design variables only, as it was
done in the numerical example, the problem
was made amenable to solving by inspection of
the contour lines of the objective functions.
An inte r e st ing feat ure of the bi-cr it e r ia

problem considered in the paper is a cer tain
degree of fuzziness with which the objectives of
optimality are stated. Namely, unlike in the akin
single-criterion problems, neither the value of
the load to be sustained by the structure , nor
the mate r ia l volume need to be prescr ibed.
Instead, we may simply say that the structure
should be possibly the strongest and be made of
the least amount of material. Clearly, however,
t h e va lue s o f t he load su st a in ed and t he
structure's volume are not quite arbitrary; they
are implicit ly bracke ted by the const rain t s
imposed on the design variables.
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LIST OF SYMBOLS

The following symbols are used in the paper
Cross-sectional area of a columnA=
Width of the cruciform cross-section of a columnb=
Modulus of elasticityE=
load factor functionf1(x)=
structure' volume functionf2(x)=
performance functionf'1(x)=
performance functionf'2(x)=
i-th constraint function of Problem 1 and Problem 3gi(x)=
i-th constraint function of Problem 2g'i(x)=
Length of a columnL=
Central load applied to a columnP=
torsional buckling loadPBP=
flexural buckling loadPTB=
yield forcePY=
Thickness of the wall of a columnt=
Column's volumeV=
i-th design variablexi=
Feasible domainD=
Image of feasible domain2D'=
Vector of design variablesx=
Image of x in the performance function spacex'=
Pareto optimum solutionx*=
image of x* in the performance function spacex*'=
preferred Pareto optimum solution`x*=
image of the preferred Pareto optimum solu tion`x*'=
in the performance function space
ideal solutionxI=
image of xI in the performance function spacexI'=
t/b=dimensionless quantityx=
b/l=dimensionless quantityh=
yield stress.sY=
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