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Abstract A bi-criteria optimization is considered whose objectives are the maximization of the

load sustained by a structure and the minimization of the structure's volume. As the objectives

are conflicting, the solution to the problem is of the Pareto type. The problem is elaborated

for a thin-walled column of cruciform cross-section, prone to flexural and torsional buckling. A

numerical example is also presented.
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INTRODUCTION

The majority of the structural optimization
problems presented in the literature [2,5,12] are
single-criterion ones with the objectives of
either the maximization of the structure's
carrying capacity or the minimization of its cost
or volume. When searching for the strongest
structure (Problem 1), its cost or material
volume is predetermined and kept constant.
When, on the other hand, the minimization of
the structure's cost or volume is carried out
(Problem 2), then the bearing capacity of the
structure or its external load is predetermined
and kept constant.

The aim of this paper is to consider a
bi-criteria optimization problemthat combines
the two above mentioned problems. More
specifically the combined problem is to find the
structure that, within the frames of various side
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and behavioral constraints, would be the
strongest and would have the least possible
volume.

Clearly, the demands of the maximum
strength and the minimum material volume are
conflicting and, therefore, the optimum solution
to the problem, in the ordinary sense of the
word, does not exist. Instead, the problem can
be approached by applying the Pareto
optimality [4,13].

Pareto solutions usually constitute a large set
of designs whose usefulness can be ranked
according to one or more additional criteria.
Such a ranking is carried out in this paper, and
the solution to the problem, as understood in
this paper, isthe Pareto optimum whose rank,
according to an adopted criterion, is the highest.

Although, as stated earlier, the majority of
structural optimization problems are formulated
as single-criterion ones, variety of
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multiple-criteria problems have also been
stated, solved and published in the literature [1,
3,4,6,7,13]. In most of these papers, the
objective functions adopted by the authors were
the structure's volume and displacements of the
selected points, or the allowable load and
displacements.

Little work is reported concerning
multi-criterion optimization with the objective
functionsreoriented towards the maximization
of the allowable load applied to the structure
and the minimization of its volume [10,11]. Such
a type of the reoriented bi-criterion problem is
presented in this paper.

The procedure followed is as follows. First
the bi-criterion problem is stated more formally
and the adopted criterion for ranking Pareto
solution is described. Then, the same problem is
specified for a thin-walled column of cruciform
cross-section. And finally, anumerical example
is solved.

GENERAL FORMULATION OF THE
PROBLEM

Consider a structure whose material, topology
and loading pattern (but not the value of the
load factor) are known and whose overall
geometry, as well as the cross-sectional
dimensions are specified by a set of preassigned
parameters and by a set x of design variables x,
Xy, ..., X,. Let the feasible domain D of the
design variables be delineated by m side and
behavioral inequality constraints gj(x) A 0. The
problem is to find such feasible design variables
that describe the structure capable of sustaining
possible the largest load, using possibly the least
amount of material. Since the objectives are
conflicting, there exist only Pareto optimum
solutions x" to the problem.

The solution x* O D is a Pareto solution to
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the problem considered if and only if there is no
such xOD which gives simultaneously greater
or equal (A) allowable external load and less or
equal (A) volume than x* does, and additionally
makes at least one of the two relations: A and
A, a sharp inequality.

Most common is the existence of many
Pareto solutions for any bi-criterion problem,
from which, usually, one or more so called
preferred solutions “x* could be selected. The
preferred solution is the one which satisfiesan
adopted additional criterion.

Our aim is just to determine the preferred
Pareto optimum solution(s) "x", which can be
stated more formally as follows: find “x"QD that
maximizes load factor fj(x), minimizes the
structure's volume f)(x), and satisfies the
adopted criterion for being classified as the
preferred solution.

Before stating the criterion of preference
that will be used in this paper, let us introduce
two performance functions f(x) and f(x),
defined as follows:
£1(x)=100[f 1(X)-f1max])/(Fimin-f1max)
£2(x)=100[f 2(x)-f2min}/(f2max-T2min)
where fin. and fij,;, are the maximum and
minimum values, respectively, of the load factor
function f1(x) for xQD, . and o, are the
maximum and minimum values, respectively, of
the structure's volume function f5(x) for xQD.

Each ofthe performance functions map the
design variables space (DVS) 0, xy, ..., X, into
the performance function space (PFS) 0'ff,.
Thus, each point xODVS has its image x O PFS,
each Pareto solution X*'ODVS is mapped into its
image x in PFS, and the whole feasible domain
D is mapped into its image set D'.

Consider a specific point XOPFS, denoted
further by x|, whose coordinates f; and f, (the
values of the performance functions) are both
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equal to zero. Zero coordinates indicate that
the objective functions f(x) and f(x) are
simultaneously best fulfilled by a certain
hypothetical point x;GDVS.

However, such a point x|, representing an
ideal solution, does not exist because the
objectives fi(x) and fy(x) are conflicting.
Nevertheless, despite non-existence of the point
x|, it is convenient to consider its counterpart
x1OPFS and treat it as a reference point in
ranking the Pareto solutions. The ranking can
be performed in accordance with the following
criterion.

The Pareto solution x* ;0D VS is deemed to
be better than Pareto solution x*, if the
distance, measured in PFS, between the images
X1, and X7 is smaller than the distance between
X% and xi.

In the case of the bi-criteria problem
considered in the paper, the distance between
X" and X7 is given by

r= RGO+ HE)?
Pareto solution x" is treated as the preferred

one (denoted further by "x") if the distance
between it image X" and X| is the least of the
distances between the images x™ of other Pareto
solutions and point X.

The problem outlined above will now be
specified for the optimization of a thin-walled
column of cruciform cross-section.

COLUMN OPTIMIZATION

Consider a pinned-pinned column oflength L,
of the thin-walled cruciform cross-section shown
in
Figure 1, subjected to a central load P. The
column, due to its cross-sectional shape and
dimensions (tAL), is prone to flexural and
torsional buckling [14].

The flexural buckling load, Pgg, expressed in
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Figure 1. The cross-section of a column.

terms of dimensionless quantities x=t/b and
h=1b/L is equal to Pgg= p*EL2h*x(1+ x?-x3)/12
while the torsional buckling load, Pg, is given
byPrg= 2EL?h»3(2-x)/[(1+ n)(1+ X2-x3)], where
E and ndenote the modules of elasticity and
Poisson's ratio, respectively.

In some circumstances, yield of the column's
material may occur before or simultaneously
with buckling. The yield force, Py, is given by
Py = syA = syL2h?x (2-x), where Sy is the
yield stress and A is the cross-sectional area of
the column.

The typical single-criterion optimization
problems that can be formulated with reference
to the above column are as follows.

Problem 1.
and prescribed column's length L, find xand h

For a given material volume V;

that in the feasible domain D maximize the load
P applied to the column.

Problem 2. For a given load P and column's

length L, find X and h that minimize the

column's volume V in the feasible domain D.
Formally, the two problems can be stated in
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the following manner:

Problem 1. Find x = {x; x5}= {X h} that
maximizes fi(x)=P=min(P g,P1g,Py) subject to
g1(x)=V-L3hx(2-x)= 0 (volume is kept
constant)

22(X) = Xmin-X A 0
83(X) = X-Xmax A 0
24(x) = hpip-h A0
g5(x) = h-hpax A 0

(side constraints)

=D Q-

Problem 2. Find x = {x; x}={ X h}

that minimizes f,(x)= V = L3xh?(2-x) subject to
g'1(x)=P-min(Pgg, P, Py)=0 (the applied
load is kept constant)

g2(X) = Xmin-XA0

23(X)= = X-XmaxAO (side constraints)

g4(X) = hyin-hA0 gs5(x) = h-hye A0

The bi-criterion problem, suggested in this
paper, specified for the column considered, is to
find x and h that make the column possibly the
strongest, using possibly the least amount of
material.

Stating it formally, the problem is to
determine x"= { x* “h’} that constitutes the
preferred solution within the Pareto solutions to
the bi-criterion problem:
find x = {x; X} = {X h} that
maximizes fi(x)=min(P gg, P1g, Py),
minimizes f5(x)= L3 h?X(2-X), satisfying the
constraints g(x), g3(x), g4(x) and gs(x).

The problem can be solved in a variety of
ways. One option would be the use of the
weighting method [4].

The weighting method transforms the vector
optimization problem into the scalar problem
whose solution coincides with the Pareto
solution to the original problem. The scalar
problem consists in finding the minimum point
x" of a single-valued objective function z(x),
formed as the sum of products wify(x),
i=1,2,...,n, of non-negative weighting
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coefficients wi's and the objective functions
fi(x)'s. The weighting coefficients are, usually,
normalized so that @w=1. Consequently, in our
bi-criterion case, z(x) would be wfj(x) +
wofa(x) = wifi(x) + (1-w)fa(x).

The scalar minimization of z(x), carried out
for various values of weighting coefficients wj,
leads to creating a set of Pareto solutions x".
The solutions obtained are, subsequently,
subjected to a ranking procedure, performed
accordingto an adopted preference criterion.
The criterion may be, for example, the above
mentioned criterion of the minimum distance r
of the image x" of the Pareto solution x* from
the ideal solution's image x|, measured in the
objective functions space Off;.

Another option, well suited for solving the
problem posed in this paper, is to determine
and plot the contour lines of functions fj(x) and
f5(x). Their inspection, accompanied by the
iéwpectio ofthe directions of gradient vectors
ef; and éf, permits, as will be shown in the
numerical example, to recognize easily the set
of Pareto solutions x* in D. Next, the
recognized Pareto solutions x" are subjected to
ranking, carried out in accordance with the
criterion of the minimum distance r of the
image x” from x; in the objective function space
Of £, Hor[performance( function space Of; £,

The problem can also be solved by
minimization, inthedesign[variablespace, 0fla
scalar functionr(x)= jf |'(x)2+ £, (%)% xOD, that
describes the distance of any feasible design's
image (Pareto solutions' x*included) from x;.
The numerical problem that follows is solved by
using the last two methods.

Numerical example. The problem is solved
for the following data: E= 205 GPa, n=0.3,
L=3.0 m, sy=350 MPa, Xu,=0.015,
Xmax=0.055, Npuin=0.025, hy,,,=0.075.
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The objective functions f1(x) and f(x) for
the above data are of the form
fi(x) = min{1.5174*10%*x(1+ x2-x3), 2.8385%10°
h2x3(2-x)/(1+ x2-x3); 3150h?x(2-x)}
fr(x) = 27.0h2X(2-X).

The feasible domain and contour lines of the
functions fj(x) and f>(x) are shown in Figure 2.

Examination of Figure 2 indicates that within
rectangle CDEF the contour lines of fj(x) and
f,(x) are_parallel which means that the gradient
vectors € f; and € f, have the same directions.
For any point xXOCDEF the increase of the
value of fj(x) is possible in any direction which
makes an angle aQ(-p/2, p/2) with vector efj,
while the decrease of fj(x) is possible only in
the direction forming with vector -€f, an angle
bQ (-p/2, p/2). Since aulb is an empty set, there
exists no such a direction from any point xO
CDEF which would allow for simultaneous
increase of fi(x) and decrease of f>(x).
Consequently, any point xO CDEF is the
Pareto solution.

Let us now examine ridge BC of function
fi(x). From any point x of the ridge, the
increase of fj(x) can be obtained if a step is
made in the direction contained in the cone of
angle g, (g<p), formed by the tangents to the
contour lines of fj(x) at x belonging to the
ridge. At the same time, the decrease of f(x)
can be obtained if a step is made from x in the
direction that forms an angle bQ(-p/2, p/2) with
the negative gradient of f5(x). Since gub=T,
there is no such a direction along which a step
made would simultaneously increase fj(x) and
decrease fy(x). Thus, any xO BC is the Pareto
solution.

By similar reasoning, supplemented by the
effect of the constraint g,(x)=0, one can also
find that all of the points x belonging to
segment AB are the Pareto solutions to the
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problem.

Among the determined Pareto solutions,
there are two which, at the same time,
constitute solutions to the single-criterion
optimization problems. These solutions are
represented in Figure.2 by points E (x= 0.055,
h=0.075) and A(x=0.015, h=0.025),
respectively.

From the design variable space, let us now
move to the performance function space Of'f>.

The image of the feasible domain D (area
AHEG) in the performance function space
O'f'f" is presented in Figure. 3. The collection
of points along the curve ABCFDE
represents the image of the Pareto solution set.
The point closest to the origin O of the
reference frame, denoted in Figure 3 by letter
Z', is an image of the preferred solutions. In the
DVS, the preferred solutions are represented by
the points belonging to line PR, whose
extremities P and R have the following
coordinates (0.03333,0.06792) and (0.03780,
0.06386), respectively.

For all the preferred solutions ~x, the values
of the objective functions are the same:
f1("x")=0.953 MN and f,("x")=0.00816m 3.

Comparing the maximum load sustained by
the preferred design “x* and its volume with the
P and V pertaining to other characteristics of
the feasible designs, it can be found that P("x")
= 0953 MN= 0.503 fin—= 0.503(xp)=
107.207*f| min 107.207P(xp), V(X)) =
0.00816m* = 1.991 f),;, = 1.991V(x) = 0.502
fomax = V(xg).

The present numerical example has also
been solved by computer minimization of a
scalar function 1(x) = r(X, h) = jf1(x)2+ f(x)%
carried out in the design variable space. The
results obtained are visualized in Figure 4, using
the MATLAB 3-D graphics [8]. The Figure 4,
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Figure 2. The feasible domain and contour lines of the objective functions fj(x) and f>(x).
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50

Figure 3. The image of the feasible domain in the performance function space.

shows the surface representing function r(X, h)
and the shade map of r(x, h). The darkest
region of the map refers to the set of the
preferred solutions x".

CONCLUDING REMARKS

Although structural optimization problems are
by nature multiple-criteria, they are usually not
treated as such. Designers frequentlyreduce
them to single-criterion ones, choosing most
often asthe objectives either the maximization
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ofthe structure's strength or the minimization
of the structure's cost. The main reason is the
relative complexity ofthe solution procedures
for multi-criteria problems.

Avoidance of formulating the optimization
problems as multi-criteria ones in many cases is
notjustified. Firstly, multi-criteria formulations
better reflect practical design reality than
single-criterion problems do and; secondly, the
computations involved in solving the former
problems might not necessarily be complex. This
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Figure 4. The surface representing function r(x,h) and shade map of r(x,h).

is especially true when both the number of the
objective functions and the number of the
design variables are kept low. Though the
problem presented here is only bi-criteria, it
takes into account quite essential objectives
such as the maximization of the load factor for
the structure and the minimization of the
structure's volume. By formulating the problem
in terms of two design variables only, as it was
done in the numerical example, the problem
was made amenable to solving by inspection of
the contour lines of the objective functions.

An interesting feature of the bi-criteria
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problem considered in the paper is a certain
degree of fuzziness with which the objectives of
optimality are stated. Namely, unlike in the akin
single-criterion problems, neither the value of
the load to be sustained by the structure, nor
the material volume need to be prescribed.
Instead, we may simply say that the structure
should be possibly the strongest and be made of
the least amount of material. Clearly, however,
the values of the load sustained and the
structure's volume are not quite arbitrary; they
are implicitly bracketed by the constraints
imposed on the design variables.
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LIST OF SYMBOLS

The following symbols are used in the paper
Cross-sectional area of a column

Width of the cruciform cross-section of a column
Modulus of elasticity

load factor function

structure' volume function

= performance function

performance function

i-th constraint function of Problem 1 and Problem 3

= i-th constraint function of Problem 2

Length of a column

Central load applied to a column

torsional buckling load

flexural buckling load

yield force

Thickness of the wall of a column

Column's volume

i-th[design[Variable

Feasible domain

Image of feasible domain

Vector of design variables

Image of x in the performance function space
Pareto optimum solution

image of X" in the performance function space
preferred Pareto optimum solution

image of the preferred Pareto optimum solution
inltheperformance [lfunction[$pace

ideal solution

image of xj in the performance function space
t/b=dimensionless quantity
b/I=dimensionless[quantity

yield stress.
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