NUMERICAL SIMULATION OF SHOCK-WAVE/
BOUNDARY/LAYER INTERACTIONS IN A
HYPERSONIC COMPRESSION CORNER FLOW

A. Pishevar

Depariment of Mechanical Engineering
Isfahan University of Technology
Isfahan. Iran

Abstract Numerical results are presented for the shock-boundary layer interactions in a hypersonic flow
over a sharp leading edge compression corner. In this study, a second- order Godunaov type scheme based
on solving a Generalised Riemann Problem (GRP) at each cell interface is used to solve thin shear layer
approximation of laminar Navier-Stokes (N-S) equations. The calculated flow-field shows gencral
agreement with the experimental data. The heat transfer coefficient and the extent of the separation are
predicted with an adequate accuracy. Furthermore, the effects of theemployed slope-limiter on the present
computations are addressed.
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INTRODUCTION

The compression corner flow can be considered as a
simplified model for the flow over control surfaces
and the engine inlets of high speed air-breathing
vehicles. The shock/boundary layer interactions that
occur in the flow field can drastically reduce the
effectiveness of these devices or even damage the
structure. Therefore, the successful prediction in
calculating the aero-thermal loads and the extent of
separation for this complex flow is a critical issue in
design process. Figure 1 shows schematically the
prominent features usually observed in the resultant
flow-field. Two kinds of interactions can be identified

in this figure. First, a shock is formed at the Icading
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edge due to the displacement of streamlines in the
layer near the leading edge where the boundary layer
grows smoothly. Second, the comer shock interacts
strongly with the bounday layer in a very complex
fashion. The high pressure behind the compression
waves is felt upstream through the subsonic portion
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Figure 1. Schematic of resultant flow field.
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of the layer and causes the flow to separate some
distance upstream of the comner. As a result, a shock
develops at the separation point and the comer shock
moves downstream where the boundary layer
reattaches the surface. Furthermore, the comer shock
intersects the leading edge shock, resulting in an
expansion fan and a slip stream. Downstream of the
reattachment point, skin friction and heat transfer
rate increase due to the rapid decrease of the boundary
layer thickness.

The compression comer flow has been investigated
experimentally by several scholars. Holden and
Moselle [1] measured the surface quantities and the
length of the separated region under a wide range of
low-enthalpy conditions. Mallinson et al. [2] studied
the possible influences of chemical reactions and
other real gas effects for high enthalpy flow. They
concluded that under their experimental conditions
these effects appear to be negligible and, therefore,
theoretical and computational efforts based upon a
perfect gas model may lead to accurate results. In
addition to its practical advantages, compression
corner flow has also become a standard test problem
for the validation of many codes, due to the existence
of highly accurate benchmark experimental data.
Rudy et al. [3] examined the highly separated flow
with four different codes and showed that for
accurate comparison with experimental data,
computational methods need to incorporate three
dimensional effects. Taking this point into account,
Gaitonde and Shang [4] investigated the accuracy of
flux-split algorithms in predicting heat transfer
coefficient. They concluded that their computational
results could be notably influenced by the choice of
slope limiter employed in their calculations.

In the presence of strong discontinuities such as
shock waves, numerical treatment of convective fluxes
in N-S equations is the most difficult task to cope.
Overthe last four decades different classes of schemes

have been proposed to solve this problem (see for
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example [5]). The more recent approaches employ
the concept of non-linear TVD stability criteria and
are second-order accurate in space and time. These
schemes are usually called high resolution schemes.

There are different approaches for constructing a
high resolution scheme [6-8]. However, a common
property can be observed among all TVD schemes:
the TVD sufficient conditions are imposed by some
kind of limiting procedures called limiters which
impose constraints either on the gradient of the
dependent variables or on the flux functions.

In this paper, the slope limiter approach is used to
construct a second-order numerical algorithm.
Generally, the proposed scheme consists of a
procedure through which a higher order spatial
accuracy is obtained (the linear reconstruction of
initial data via a slop limiter function) and a
Generalised Riemann Problem (GRP) at each cell
interface [9] is solved to obtain the second-order
accuracy in time as well.

Although this method is constructed for the one
dimensional inviscid equation, its extension to the multi-
dimensional viscous problems is accomplished by a
fractional-step approach as described in Reference 10.

In the present work, we have alsotried to duplicate
the flow parameters of the experiment of Holden and
Moselle [1]. As a result, the behaviour of different
numerical approaches can be assessed consistently
by making a comparison between numerical and
experimental results. The main objective of the present
effort is to examine the accuracy and reliability of the
proposed numerical algorithm in complex flow-field.
The other objective is to validate the present code by
comparing it with experimental and other numerical
data.

1- BASIC EQUATIONS AND NUMERICAL
APPROACH

The two dimensional thin shear layer approximation
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of N-S equations in a strong conservative non-

dimensional form can be written as:

* *[ *, *V
U™ oF”" aG™  aG™ _

0 (H
o9r-  ox*  ay* dy*

where U is the vector of conserved variables:
U* = { p*, P* u p*v*, p*e*}r, (2)

p”denotes the non-dimensional density (p/p_), " and
v*the non-dimensional Cartesian velocity components
W/V_, v/V_), and €" is the non-dimensional total
encrgy defined as e” =" + 0.5 (u*? + v*?), where " is
the non-dimensional internal energy (CT1/V*_for a
perfect gas). The non-dimensional coordinates and
time are defined as: Xx"=x/L,y" = y/L,{* =/ (L/Voo). F"
and G are convective fluxes in x* and y* directions,
respectively, and G™ stands for viscous flux normal

to the flow direction;

F*I = {p*ll*,p*u*2+p*y p*u*v*w H*(p*(’,* + p*)},’
G*]z {p*vx'pxu*v»’ p*v*2+ p*’v*(ptex + p*)},’ (3)

*y —_ x * o * > * - t
Gv=-1{0, Ty T T+ T V7 -0y}

The shear stresses and heat fluxes become,

o= wou’* r o= 4uTv* - o orT"
¥ Redy” 7 3Redy" (y-1)M2RePr 3y"
4

It should be noted that only y derivatives of viscous
terms are present in G”v. For air, the Prandtl number
Pris assumed to be 0.72, ¥ = 1.4, and the molecular

viscosity given by the Sutherland equation as

J7i _(' T )3/2TW +5 5
W (P TeS )
Hrf AT, T+S

in which T is the absolute temperature, pt T, and

ref’
S are model constants (,uref = 1.789 x 10° Kg/ms,
T ,=288°K,S = 110° K). The eqaution of state for

a perfect gas is given by
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pr=(y-1) p*e*-%*(u*2+v*2)

2 %
re=1Mep" ©)
Jo

where p”and T are the non-dimensional pressure and
temperature, (p*= p /p VT =T/ T..). Theabove set
of equations is completed by the addition of proper
set of initial and boundary conditions.

1.1 Numerical Scheme
To develop an efficient numerical algorithm,
Equationl is split at the differential and discrete level
in terms of the spatial directions and the physical
processes [11]. The proposed method is to time split
the equation into a hyperbolic (convection) part and
a parabolic (diffusion) part. The hyperbolic part is
solved by an explicit second-order Godonov type
scheme viathe locally one-dimensional time-splitting
method of Strang [ 10]. The parabolic partis solved by
an ADI'method with central difference in space. Note
that for TSL equations, there is only one viscous
term. Therefore, discretization of the parabolic part
will lead to three diagonal systems of equations
which can be converted by a low cost method.
Now, consider the hyperbolic part of Equation 1.
Itonly evolves the solution in time by the convective
flux in the x direction (all superscripts are removed

from the notation for the sake of simplicity):

U L 9F _y N
dr  dx

Integrating Equation 7 over a cell confined to the

[x/_m, X, 1/2] and the time interval [ ('], yields:

—n A ~~ -~
i =U - 2L Fap - Fipl (8)
Ax

—n ]
where U; denotes the cell average values at time ¢

and Fj;1p is the numerical flux function defined as:
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~

Fj+l/2 = F (Li (,\'j l)) dt (9)

+1/2°

Inthe present method., the above fluxes are calculated
by asecond-order Godunov type scheme as described
in Reference 9. Basically, this method is broken into

three steps:

n - . . .
.Use the cell average U; to define a precewise linear
approximation of the initial condition at time ™

X-X;

U, m=U +=228/" for xelx

j-120 XJ + 1/zJ
(10)
. Solve the conservation laws Equation 7 exactly
with the above initial conditions in each cell for a
sufficiently small time interval " < ¢ < ('

. Compute all averages of the resulting solution at !

to obtain [7jn+l by Equation 8.

A necessary condition for this algorithm, whichis
of second-order accuracy, is that the slopes S are
locally weighted averages of forward and backward
differences. On the other hand, to avoid spurious
oscillations, a constraint should be imposed on the
amount of slope in each cell by an appropriate limiter
function. In most of the following computations, the
Monotonised Central Differehce (MCD) slope-
limiter, which was given in the context of the MUSCL

scheme by van Leer [7]. is used:

S7(a,. b) = min mod (a,;_b, 2minmod («, b))

(1)
where a, bj denote the forward and backward

ditferences

Uﬂ (77! (7)! [—]—n
f+1 - j -~ Ul
a.="" I b=l

i J (12)
Ax Ax

and the minmod function is defined by

200 - Vol. 11, No. 4, November 1998

a if lalibl, ab20
minmod @b)={ p if lgl2lbl . ab>0 (13)
0 f ab<O

A more diffusive limiter function is the Min Mod
(MM} limiter defined as

S’ =minmod (a, b) (14)

The piecewise linear form of the initial conditions
(Equation 10) may introduce discontinuities at the

cach cell interface X, Thus, exact solution to the

w1z
Equation 7 consists of a sequence of Generalised
Riemann Problem [9] at the cell interfaces. For
Equation 8 whichis of second-order accurate in time,
the numerical flux I?M/z (Equation 9) should be
evaluated at mid-time step (j + 1/2, A#/2) at a cell
interface as

a+1/2 = iji/E + %

o (15)

ot i

Here, F,-Ifl/z denotes the flux contribution from a
Riemann solver using solely the interface variable
values. An approximate Riemann solver based on
two simple acoustic waves is used in the smooth part
of the flow while the algorithm switches to an exact
Ricmann solver near the discontinuities. Howeverin
the later case, the approximate solution by the two
acoustic wave models can still be used as an initial
guess in the iterative procedure [12]. The time
derivatives in Equationl5 depend on the pattern of
waves emanating from the discontinuities at initial
time ¢ = 0* and given in a closed form by Ben-Artzi
and Falcovitz [9]. The stable time step size Af should

be restricted by a CFL like condition as

Alip oy <1 (16)
Ax )

where IF(U)l _1s the magnitude of the globally

max
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largest characteristic speed. This restriction on the
time steps ensures that the emanating wave from one
interface never crosses the neighbouring interfaces.
The same procedure canbe used to treat the convective
fluxes in the v direction.

Asnoted earlier. the above algorithm is extended
to mulu-dimensional viscous problems by a fractional-
step approach. Let L' L;" be the locally one-
dimensional splithyperbolic operator which evolves
the solution by the time step Ar in the x and y
directions. Furthermore, let L be the implicit split
parabolicoperatorinthe y direction. Then a fractional-

step method for the TSL Equation 1 will look like

—n+2
r

=LA LM LR LM LAY (17)

At 7 .
where Ly Ujy. for example, is

AT = A D ~
Ll Upw=Ujk - — 1Fjsyan - Fiinu ] (1%)
Ax

with Fjrin e defined in Equation 15. Now, the stable

time step in both directions is given by

Aty Al
At + Aty

At = (19)

where Az, At are the stable ume steps in x and y
directions, respectively, given by Equation 16. This
ensures that the composite time step is smaller than
the split one dimensional stable time steps.

The above algorithm can be extended to the case
of arbitrary quadrilateral grids. In such a case, the
locally one-dimensional split operator, which now
solves Riemann problem in the direction of the
normal to the cell edges inthe physical space, sweeps
the grids in the computational coordinates of j and &.
In such a case, the limiter function is imposed on the
directional derivatives in the local curvilinear

coordinates.
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1.2 Computational Domain and Mesh

In the present study. a two dimensional wedge with
24 degrec comner angle and a leading edge distance of
L=0.44m is considered. Computations were
performed on three meshes of 120 x 40, 180 x 60,
240 x 80 grids constructed by an algebraic approach.
The coarsest grid was clustered near the corner in the
streamwise direction by a stretching factor of 8= 3.0
and also in vertical dircction near the solid surface by
B=1.007. The second and the third grids with higher
resolution were constructed from the first grid using,
respectively, SO and 100 percents additional points in
both directions while maintaining the same grid
stretching. The coarsest mesh used in the calculation
is shown in Figure 2. In this figure, the x axis is

normalised by the leading distance as X = x/L.

1.3 Boundary and Initial Conditions
The boundary conditions are considered as follows:
at inflow boundaries, the flow variables are held
constant at the frec-stream state; at solid boundaries
the velocity components and the normal pressure
gradient are set to zero; at the outflow boundary, the
flow is predominately supersonic and therefore, the
zero order extrapolation of flow variable from the
inside of the computational domain is sufficient.
To compare with the otherexperimental evidence
and also numerical results [3,4], the free stream

parameters are considered as follows; T =72.7 K,

Figure 2. Computational grid.
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p_=10.1 N/m?, frec stream Reynolds number per unit
lengthRe=2.4x10°, M_=14.1. The solid wallis held
at the isothermal condition with T = 297.22K. The
initial condition is assumed to be uniform and equal

to the frec stream condition.

2. RESULT AND DISCUSSION

The computations were performed on a Pentium 166
with 32 MB of memory. With the middle grid, each
run takes approximately 20 hours. Calculation is
terminated when the computational time reaches to
5x107%s. By this time interval the residual in the
density field will be less than 107, Figure 3 displays
the calculated pressure contours in the flow-field
with the finest grid and the MCD limiter function. In
this figure, to amplify all present waves with different
strengths, the pressure contours are notequally spaced
between the minimum and the maximum values.
Generally, a good agreement can be seen between the
present computation and the flow-field pattern
described earlicr. Streamlines are shown in Figure 4.
The flow separation point, the reversed flow region,
and the boundary layer rcattachment point are
demonstrated well by this figure. It should be noted
that the accurate prediction of separation extent
depends on the grid resolution in the normal direction

to the solid surface. In this simulation, the first point

is placed at y* =y p_(1,/p )%/ 1,<2.

0.0 0.5 1.0 15

Figure 3. Pressure contours.
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The surface quantities are compared with those of
the experiment in Figures 5 to 7. The surface pressure
coefficient,defined asc, =2(p -p_)(p.V_*).isshown
in Figure 5. Here, the abscissa is the dimensionless
distance along the surface from the leading edge
(X=S/L, L=0.44m). As shown in this figure the
solution is almost converged on the second grid. The
first rise in the pressure coefficient is calculated
accurately and its position (X~0.55) is in very good
agreement with that of the experiment. However, the
maximum pressure coefficient is about 16% over-
estimated. Figure 6 displays a comparison between
the calculated skin friction coefficient, defined as
27 /2(p_u_?), and that of the experiment. Negative
skin friction values determine the size of the separated
reverse flow region. As can be seen the extent of
separated region is predicted with adequate accuracy
but the maximum and minimum skin friction valucs
are not in complete agreement with the experiment.
Finally, the heat transfer coefficient, defined as
k(aT/ion) J{p u_(h,-h_)} where histhetotal enthalpy,
isshowninFigure 7. Here again the peak heat transfer
coefficient is calculated higher than its experimental
value. However, general agreement still exits between
the computation and the experiment. The deviation
of all surface coefficients from their expcrimental
values may have an origin of three dimensional
effects as discussed by Rudy et al. [3].

Numerical experiments of this flow-field by other

Figure 4. Stream lines.
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Figure 5. Surface pressure coefficient, experiment from
Holden et al. [1].

researchers revealed that the solution may be highly
influenced by the choice of the slope limiter. Gaitonde
et al. [4] investigated the behaviour of three limiters
using the Roe’s scheme with a third order procedure
and the thin shearlayer approximation for the viscous
terms. They pointed out that the separation extent and
peak surface quantities are clearly sensitive to the
type of limiter. The most accurate results in their

calculations were obtained by the less compressive
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.75 4 Expenment Il'-l S
|
0.02 -I || ll\
| .N".__
S T
0.01 L "... | -
F % |
e ||
| \ i
000} . _l_i_nlg,!lItJll lII
=
[ ]
R i P
0 0 1.0 15 2.0 1k

Figure 6. Skin friction coefficient, experiment from Holden
etal. [1].
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Figure 7. Heat transfer coefficient, experiment from Holden
etal. [1].

minmod limiter. This conclusion exhibits contrast to
the other numerical experiment with the advection
model equation [13] or the Euler equations [14].
They also reported that by refining the grid, a larger
separated region than that observed experimentally
was predicted. The effects of slope-limiter on the
present numerical results are shown in Figures 8,9
and Table 1. Here, only the MCD and MM limiters
(the first is typically a compressive limiter and the

f—r . =TT
180*60 MCD himiter ------=-aw=-:
180*60 MM limiter - - —-—-—--
240*80 MCD nmiter -
Experiment(1] .

24080 MM limiter  --------emoeees

Cp

0.0 %

Figure 8.Effects of limiter function and grid resolution on
the pressure coefficient.
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0] heat transfer rate

Re Reynolds Number

.S'}" slope Iimiter function

T temperature

u, v Cartesian velocity components

U vector of conserved vanables

(7,'” cell average of conserved vanables

S model constant in Sutherland viscosity equation

Greek Symbols
gnd suetching tactor

specific heat ratio

density

4

u molecular viscosity
P

T shear suress
A

increment in time or space

Subscripts

J k cordinates in discretized computational domain
ref reference state

oo free stream state

Superscripts

n ume level

R Solution to Riemann problem

* non-dimensional parametdrs

Abbreviations

ADI Alternative Direction Implicit

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Lewy condition
GRP Generalised Riemann Problem

MCD Monotonised Center Difference limiater
MM MinMod limiter

MUSCL. Monotone Upstream Scheme for Conservation

Laws
N-S Navier-Stokes equations
TSL Thin Shear Layer approximation of N-S equations

TVD Total Vartation Diminishing
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