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Abstract In order to investigate the effects of non-linear springs in vibrating behaviour of vehicles,
the independent suspension of conventional vehicles could be modelled as a non-linear single
degree of freedom system. The equation of motion for the system would be anon-linear third
order ordinary differential equation, when considering the elasticity of ruber bushings in
joints of 'shock absorber. It is desirable that the system be stable, i.e., periodic inputs periodic
outputs. In order to obtain the conditions that guarantee the existence of periodic solutions, and
therefore, stable responses, the Schauder's fixed point theorem has been implemented to a general
third order equation. Thus, the adapted conditions could be used for a wide range of dynamical
systems. For the numerical analysis, a rapid convergence method has been developed, and used to
solve the model. The correctness of periodic conditions and the numerical algorithm have been
demonstrated.
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INTRODUCTION

During the last few decades many scientific papers
dealing with suspension analysis and design have
been published, [1,2]. Attention has been especially
paid to the theoretical study of the dynamic behaviour
of active suspension systems, [3,4].

For an industrial application it seemed useful to
study on passive suspension whose physical
characteristics do not vary, but have non-linear
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character. Important features of the real world car
suspension design problem are that only a fixed and
limited suspension working space is available, and
that such vehicles have to traverse road surfaces of
widely differing roughnesses. These results have
made it clear that the chief limitation of conventional
fixed parameter passive suspension system arises
from the need for compromise inthe choice parameters
between the demands of smoothness of the surfaces,
vehicle attitude control with load changes and
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manoeuvring, and high speed handling quality, [5,6].

In order to facilitate such a compromise, fhe
relationship between the extent of the stiffness and
that of damping variations must be provided and the
performance gains must be obtained, [7]. Using non-
linear springs might be a way to overcome some of
the limitations. With non-linear elements, the
simplicity and stability of the system would be changed
and therefore, its behaviour should be analysed.

The assumption of linear behaviour of mechanical
elements, although simplifies the solution
considerably, butis fartoo ideal formost real systems.
Non-linear systems, being more of a realistic
representation of the nature, could exhibit asomewhat
complex behaviour. Their analysis requires athorough
investigation into the solution of the governing
differential equations. These non-linear differential
equations that, usually, do not provide any exact
solutions and thus must be solved numerically, [8].

The most important step in studying non-linear
dynamical systems is to obtain conditions which
guarantee the existence of periodic solutions, and
hence calculate these solusions by implementing
suitable numerical techniques. The significance of
periodic solutions, lies on the fact that these solutions
represent the steady state response of the system. It
is known that the most analysis of non-linear
systems are on the following second order, whose
periodic condition has earlier been discussed
elsewhere, [8,9].

x" + g (x)x' + g(x.x'1)= e(t) M
8(x, X", )=g(x,x", t+ 1) e(t)=e(t+ 1) @

We have modelled the front suspension of a
conventional vehicle with a third order differential
equation as a non-linear dynamic vibration system.
Then, an attempt has been made to obtain the necessary
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and sufficient conditions for periodicity of the
corresponding system response using Schauder's fixed
pointtheorem. After obtaining the periodic conditions,
the same differential equation has then been solved
numerically. The obtained numerical solutions, not
only demonstrate the response of the system, but also
offer a means to check whether or not the proposed

sufficient conditions are valid.

VEHICLE VIBRATION WITH NON-LINEAR
SUSPENSION

Figure 1 represents the essential parts of the front
suspension of a road vehicle showing the unsprung
mass consisting of the tire, the wheel and the stub axle
connected by a rubber bushing to a hydraulic shock
absorber and the main spring. The other end of the
shock absorberis connected by another rubberbushing
to a sub-frame of the car body. A set of whishbone
link arms at each end serve to stabilise the unit.

X

Figure 1. Essential parts of the front suspention of a conventional
vehicle.
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This mechanical model canbe considered as atwo
degree-of-freedom dynamical system, [10]. The tire
stiffness is assumed to be large enough and could
simplify the system in the form of a single degree of
freedom system.

The co-ordinates x, y and z represent the body
motion, wheel excitation, and the displacement at the
connection point of the rubber bushing and the
hydraulic shock absorber respectively. The equations
of motion may then be written as:

-k (X-y) - ky(x-z)= M x", k(x-z)= c(z"-y’) 3
In order to obtain the relation between the input

displacement y, and the output motion x, the variable
z should be eliminated. Thus,

"+ I_sztt+k1+ k2xl+ k]_k2x =k1+k2 y'+klk2y
c M, Mc M, My

C))
Assuming a periodic profile for the surface, the input
displacementy could well be represented by aperiodic
function provided that the vehicle is travelling at a
constant speed.

In case of linear springs and dampers, the solution
of this third order differential equation could be
easily derived. However, due to non-linear behaviour
of real mechanical springs and shock absorbers, such
an over-simplification is not always realistic. For the
proposed model with non-linear elements, a third
order non-linear differential equation is obtai;led.

Experiments show that with relatively large
displacements, the spring rate may be expressed as:
a+béd 2, where a is a positive constant for hard
springs. On the other hand, for the case of a soft
spring b ought to be negative. The factor & represents
the relative displacement of the two ends of the
considered spring and therefore, for the main spring,
8= x-y.

Considering both &, and k, to be non-linear
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functions of displacement x, while ¢ being a function
of speed x’, then Equation 4 would become asimplified
case of the following general equation,

X"+ g, (x)x" + g, (x)x" + g(x, x'.t)= e(t) &)
where

n_ka _ki+ k2
e =2 gly= S (©)

p

; _kik ki+ky+ kika
g(x,x,t)-e(t)—-ﬁx-——y -2y )
Mpc M, My

For a specific example a system with all elements
being linear except the main spring k, may be
considered. Hence, by assuming k,=a+b8? and
6 = x-y, Equation 4 may be rewritten as,

"

xt ke arks +_L(x -k raks +2£l(x -y =
¢ M, M, M

a+k; 4 b (x )2 .+ak2 bk, 2,
——iy'+Ll(x- —2y +=—2(x-y)y ®
M, Y M, i My <

MATHEMATICAL ANALYSIS

Considerthe following class of non-linear differential
equations

XHg (X)X + g (X)X + g(x, X', t)= e(t) )]

Equation 9 is a third order non-linear differential
equation for which the exact solution in the general
case, is not known. However, various numerical
techngiues should be implemented in order to
determine its approximate periodic solutions. The
Schauder's fixed point theorem enables one to find
the conditions for the existence of periodic solutions,
whithout evaluating such answers.

Regarding Equation 9, the aim is to obtain
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conditions for periodicity of solution, with the same
time period as that of the input excitation. The method
presented here is based on the Schauder's fixed point
theorem, [11].

Assuming g and e to be periodic functions of ¢, the
necessary and sufficient conditions for Equation 9 to
have a periodic solution x with the same time period
T and e are:
xX%0)=x%1) i=0,1,2 10
Introducing the Green's function G(t, s), the solution
of Equation 9 can be expressed as:

x(0)= | G(15) [,(x(s)x"(5) + g,(x(s)x(s)+
8(x(s), x'(s).s) - e(s)]ds (11)

It j:e(t)dt= 0 (12)

Then the last condition in Equation 12 for the feasible
x(t), which satisfies the last condition in Equation 3,
must be satisfied. Therefore,

Lrg(x'o(s), x'(s), s)ds= 0 (13)

Equation 13 expresses the sufficient condition for
periodicity of asolution of Equation 9. In order to find
conditions that ensure the existence of x,(z) which
satisfies Equations 11 and 13, the Schauder’s fixed
point theorem may be applied.

Let C[0, 7] be the space of all differentiable
functions on [0, 7] equipped with the following
norm:

x = Max{x(t); t € [0, 1]} (14)

The complete normed linear space B could be defined
in the following form:
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B=C[0, 1] xC[0, 1] xC[0, 1] XR (15)
The norm of B elements could be defined as:
(x,x', x" h)=x+x"+x"+h (16)

On the space B, the operator U could be defined as
following:

Ux,x", x", h)= (x, x’, x", h) an
where:

X¥(t)= h("LG“"(t,S) [8,(x(s))x"(s) + g,(x(s))x(s) +

g(x(s), x'(s),s) - e(s)]ds i=0,1,2 (18)

h=h-L | g(x(s), x'(5). syds (19)
0

Hence, the operator U represents a continuous

mapping from B into itself. A closed convex subsetof

B could be defined as:

S={(x,x",x".h) € B; x<K+x'< K +x"< K+h<S(v+2m)}

(20)
where,
xzn; v20; 1€ [0,7] @n
m= Max (MM, MM T, MM,T, F} (22)
F= Max{g(xx't); te [0, 1], xS K} 23

M= Max {g,(x'(1))x"(£)+8,(x(1))x'(1) +
g(x(t), x(t), t)-e(t), t € [0,t], ¥X'<K} i=0,1.2

oG

Mi=Max 9GS . (s e 0, 71x [0, 71} i= 0.1,2
o'

(25)
If it is shown that the operator U has a fixed point in
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the set S, then there is a function x,, for which:
U ( xo, Xg, Xg, ho) = (X0, Xo, Xo, ho) (26)

Considering Equations 18 and 19, then x, must
satisfy both Equations 11 and 13. Consequently, x,
would be the desired periodic solution of Equation 9.

According to Schauder’s fixed point theorem,
existence of a fixed point is proved if:

Us)c S @7
It can be shown that if (v+3m)<K, for any
(x,x',x",h)e S

its corresponding transformation, i.e.,

(x,x',x", h)

is also a member of S and the proof is completed.

Regarding the foregoing discussion, a theorem
could be deduced:

Theorem: Considering Equation 9 together with
periodicconditions givenby (10), atleaét one solution
with the same time period T as functions g and e exists
when:
(v+3m) < K; xg(x, x', ) >0, t[0, 1] 28)
PERIODIC CONDITION FOR VIBRATION

OF VEHICLE SUSPENSION

Suppose that the input excitation of the system with
Equation7 is represented by y=y,Cos(2nt). Thenthe
sufficient condition (28) forperiodicity of the response
of the system with v= 0 will be,

Ko gy k2 g o b_K (K+yo) + Sk2k +2K2 onyon
¢ M, M, My M,

International Journal of Engineering

b K-y @myo) +2K2 yo +2K2 (K ygPye < K
M, My Mpc 3

(29)
Considering the following numerical values for the

parameters involved

K,= 100 kgf cm; c= 1000 kgf.s cm; a=500 kgfcm
M, = 5000 kg; b= 10kgfcm’; y,=0.1cm (30)

it may be verified that the Inequality 29 is being
satisfied for K= 0.76.

NUMERICAL PROCEDURE

By making certain that a periodic solution exists, the
next step is to calculate this solution by the use of
numerical methods. The differential equation is
assumed that could be expressed as,

X"+ g(x, x', x", t)= e(t) GD

in which all explicit functions of time are assumed to
be periodic with the same period 7. The purpose of the
present discussion is to calculate solutions of
Equation 31 which are periodic with the same period
7. Hence, such a solution should satisfy the boundary
Conditions 10.

Regarding the foregoing explanations, the problem
reduces to finding proper values for

a=x(0) B=x(0) y=x"(0) 32)

such that the corresponding solution of Equation 33
would satisfy the following set of algebraic Equations:

oo, ByY=xa B ¥1)-0=0
Oa B y=x(a,pBv.1)-B=0 33)
vo, B Y=x"(a, B,y 1)-y=0

Now, one could guess the values of (o), 3, 7,) as the
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initial conditions. Then the Equation 33 could be
solved numerically to evaluate x(7), x(1), x"(t). The
validity of the initial guess could be checked with the

following criterion:

oo, B, Y,) o, +8(a, B, v)IB,+ wa, B, v)v,<€

(34
where £ is a convergence tolerance. If it is valid,
then (o, fB,, 7,) would be the proper set of initial
conditions and the corresponding solution of Equation
31 would be 7-periodic. If itis not valid, the Newton-
Raphson method could be applied to obtain a more
feasible set of initial conditions (a; B,, 7,), such that,

o= o+ Aa, B=B+AB, v=7+Ay (35)

Using Taylor series expansions and neglecting
all second and higher order terms, one obtains,

(P(al'ﬁl' ‘yl)g(p(aa'ﬁor YO) + i(BAa, +Q—(£Aﬂ1+a_(p.A»yI
do ap ay

e(al’ ﬂl' 71) zo(ao' ﬂO’ Yg) + _aiAaI + a—eAﬂ]+@A‘yI
oo ap oy

ylo, B, %) =wa, B, ) + Q_‘KAaI + %ﬁl"'a_WA'yz
Jdo op oy
(36)
where all derivatives are calculated at (o, B, ¥,) .
According to Equations 33, the proper set of
increments Ac,, AB,, Ay,, could be calculated
through the solution of Equations 36 with zero
for the right hand sides. Finally, Equation 35 could
be used to provide the improved initial conditions.
This procedure could be repeated until the proper
set of initial conditions satisfying Inequality 34 are
determined.
For calculating the derivatives in Equation 36
effectively, one could find the following relations,
with the use of Equations 33,
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9 @By 4 dp _ox 09 _ 3x

a o B P 3y 3y
2 _ox'(@wBfy) 06 _ox' ;20 _dx
o e B B ¥y oy
dy _ox" (& B 7) dy _ox" oy _x"
3o 300 B 9B oy oy
(G7

The partial derivatives of x, x” and x” with respect to
a, B or y at some point are obtained by imposing
perturbations on the corresponding initial conditions
and then analysing the effects of such perturbationsin
x(1), x(71) and x"(1).

RESULTS

The periodicity condition (28) is illustrated in Figure
2. The appropriate domain of K could easily be found
by assuming values for m and v.

With a computer program based on the foregoing
numerical techniques, we have detected the feasible
initial conditions for periodicity. The parameters of
the system have been chosen to be identical to the
numerical values given in (30). Then the proper
initial conditions for periodic answer were computed

as:

il
L RV« Y

[N

\lté<<<:<<
[T
[ W

il
(w

Figure 2. [llustration of the periodicity condition.
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Figure 4. Phase plane trajectory for the periodic response of the
system.

x(0)= -3.05928x10%; x'(0)= 5.0073x10°

x"(0)=1.203694 x 10 (38)
for which:

x(T)= -3.05927x10%; x'(1)= 5.0091x10°

x"(1)= 1.203694 x 10°? 39

These results compare very satisfactorily with
the Conditions 10, and are in agreement with the
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Figure 5. Plot of x - X for the periodic response of the system.

previously computed value of K.

The time history of state variable have been
evaluated It
demonstrated that the calculated initial conditions
are proper. 45 and 6 show  the

appropriate diagram instate planes respectively.

and shown in

Figure 3. is

Figures

It is interesting to note that the x-x" diagram is
in the form of a line segment passing through
the origin, which is sweptat each time period.

Hence, the

solution represents a harmonic
response.
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Figure 6. Plot of x - X for the periodic response of the system.

CONCLUSIONS

A vehicle suspension could be modelled as a non-
linear vibration system. Its governing differential
equation could be explained by a non-linear third
order differential equation. Existence of periodic and
hence, stable responses which is not an obvious
feature for the non-linear systems must be guaranteed.
Thus the necessary and sufficient conditions for
existence of periodic solutions for a general class
of third order ordinary differential equations have
been obtained. It has been shown that these
conditions could be applicable for analysing the
steady-state behaviour of the suspension system.
Therefore, the suspension system could have a
periodic response with a constant amplitude when it
is subjected to the excitation of the road in the form
of harmonic wave.

NOMENCLATURE
g, i=0,12 functions appearing as the coefficients
of differential equaitons
e(t) forcing function
C class of continuous and differentiable

function
x(t), x'(t), x"(1)
G(t,s) Green's function

state variables
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S.B Banach space

K bounded domain of phase space

U Operator

M maximum of a function in a bounded

region of phase space

t Time

d, 0 differential symbols

'(prime) d/dt

k..,.i =1,2 stiffness coefficient of springs

c damping coefficient of shock absorber

MP mass

1 period

9,0,y error functions

o, B,y initial conditions

A increment in initial conditions
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