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Abstract  This paper presents a new algorithm for the deinterleaving of radar signals, based on the
direction of arrival (DOA), carrier frequency (RF), and time of arrival (TOA). The algorithm is applied
to classic (constant), jitter, staggered, and dwell switch pulse repetition interval (PRI) signals. This
algorithm consists of two stages. In the first stage, a Kohonen neural network clusters the received
pulses on the basis of frequency and DOA. In this stage radars having the same frequency and DOA,
are identified as one class. In the second stage, the number of existing emitters and their PRIs is
determined by using TOA information. The algorithm for the deinterleaving uses the information
obtained from the previous analysis to reduce the required computation time. The simulation results
show that the algorithm is successful in high pulse density environments and for the complex signal

types.
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INTRODUCTION

Deinterleaving of radar pulses is a process of
recognizing active radar emitters. Deinterleaving
algorithms are usually based on the analysis of various
parameters of the received radar pulses, such as palse
amplitude, pulse width, carrier frequency, direction
of arrival (DOA), and time of arrival (TOA). Pulse
amplitude and width are generally not very useful
‘because they often vary from pulse to pulse due to
intentional variation by the emitteror dueto multipath
effects[1]. DOA and frequency are generally regraded
as the best parameters since they cannot be varied by
the emitter from pulse to pulse and could be considered
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to be stable.

Deinterleaving algorithms based on TOA generally
use the histogram of TOA pulses [2,3]. In these
algorithms, if there are many emitters or the nature of
the received signals is too complex, the identification
is usually hard and could be impossible. Another
restriction in these methods is that if some of the
pulses have the same TOA, they are considered as a
single pulse.

The algorithm for the deinterleaving presented in
this paper uses the information about DOA, carrier
frequency, and TOA of the received k pulses. The
major contribution of this work is the effectiveness of

the TOA processing in a complex environment. In
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TOA analysis, first the different types of possible
pulse repetition intervals (PRIs) have been extracted
with the associated numbers. Then the logical relations
between them are needed to meet some special
conditions. The different combinations of the
remained pulses are checked to achieve the final
results. However, simple cases only require the
primary steps, hence reducing the time considerably.

I. ALGORITHM DESCRIPTION

In this section, the major steps of the algorithm
are outlined. Clustering by DOA and RF are
discussed first. Then, the steps which are considered
for the deinterleaving according to TOA are
presented.

Neural Network Clustering Based on DOA and
RF

To determine the characteristics and the number of
clusters which can be found from the received pulses,
we have used the Kohonen neural network [4,5].
Since no information was available about the emitters,
an unsupervised neural network would be a logical
choice.

The network has two input neurons, one for the
frequency and the other for the DOA. In order to
estimate the number of output neurons, a simple
threshold based on clustering algorithm is used [6]. If
this algorithm yields M clusters, the output neurons
of the Kohonen network is arranged in an (M+1) by
(M+1) matrix, which provdies enough space for the
clusters to grow.

The network is trained for an input frame of n
pulses as follows: the input vectors are normalized.
Let w,.j(t) be the weight for the connection between ith
input neuron and jth output neuron, where
1<i<2,1<jS(M+1)(M+1 ) andtis the iterationnumber.
w0 )’s are randomly selected between O and 1, the
initial neighborhood radius N(0) is considered to be
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M, and the initial learning rate 1(0) is 0.5.

In each iteration, the Euclidean distance between
the input vector (x,(t), x,(¢)) and the weight for the
output neurons is calculated as

d} = i) - wy O + @0) - wy OF ¢))
The nearest neuron is considered as the winner (j*).
Then, the wieghts are adjusted as follows:

wy (¢ +1) = [PiO+ DO L@ -wy @] 3f 1j*-jISN ()
Y wii (1) if otherwise

@

During the learning phase, N(r) and 1)(1) are adjusted
as shown in Figures 1 and 2. When the weights
converge within a predefined threshold, the training
is ended. The weighted mean of the nodes in each
cluster is taken as a prototype for that cluster.

As an example, a scenario consisting of five
emitters with the nominal frequency and DOA listed
in Table 1 is used for the training of the network.
Taking account of noise and measurement errors, the
value of frequency and DO A which are applied to the
network are assumed to have Gaussian distribution

N(t)
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Figure 1. Neighborhood radius during the learning period
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Figure 2. Learning rate during the learning period

TABLE 1: The Nominal Frequency and DOA, 6= .25 GHz
and o, =3°

Frequency (GHz) DOA (degree)
8.25 | 153
117 40.6
105 305
11.2 20.2
12.1 25.7

[7] around those nominal values in Table 1. ¢, and
G, inTable 1 are the variances of the frequency and
DOA, respectively. These variances can be evaluated
approximately by the same analysis used in [7].

The value of the weights at the end of the training
phase are shown in Table 2. The first number in each
box is frequency and the second number is DOA. ¢,
shows the weight which belongs to the ith class. The
center of each cluster is calculated and shown in
Table 3.

Intherecall phase, the Euclideandistance between
the input pattern and the prototypes for the existing
clusters are computed. The input pulse is assigned to

the cluster with the minimum distance if this distance
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TABLE 2: Output Neurons at the End of a Training Phase for
the Example of Table 1.

8.19 819 [ 1035 |11.23 | 11.60 | 1213 | 1214 |
1494 | 1494 | 18.12 |19.33 | 21.74 [ 25.10 | 25.12

c, c, c, C, Cq

8.30 830 | 9.74 |11.14 | 11.53 | 12.06 | 12.08
1533 | 1533 [17.68 |19.85 | 23.52 (2581 | 25.81

¢ 7 ) S 2

8.35 835 | 9.74 |11.14 | 1153 | 12.05 | 12.08
1554 | 1554 | 18.29 [20.67 | 23.18 | 26.16 | 26.30

2 | ) ) 2

8.90 890 | 9.81 |11.13 | 1152 1194 | 11.96
19.04 | 19.04 | 18.7520.79 | 23.24 |31.21 | 3145

1049 | 1052 | 10.82 1 10.86 | 11.03 | 11.73 | 11.76
29.19 | 29.65 | 2597 25.51 | 25.55 |39.75 | 40.72

c, C, Cs Cs

1038 | 1043 | 10.56 |10.62 | 11.26 | 11.67 | 11.67
30.03 | 30.55 |30.64 |30.66 | 36.97 [ 41.38 | 41.38

c, C, C, Cq Cs

1033 | 1041 | 1057 |10.62 | 11.25|11.63 | 11.63
30.40 | 30.74 |30.80 [30.66 | 36.93 | 41.59 | 41.59

(,‘4 C4 c, c, C5 | Cs

TABLE 3: The Center of the Qutput Clustersfor the Example
of Table 1.

| Class No. Frequency (GHz) l_ DOA (degree)_
| 1 8.25 15.20

2 11.18 20.08

3 12.09 25.77

4 I 1049 . 30.35
s 1171 | 4058

is less than a threshold. Else the input pulse isidentified
as a new emitter and the training starts with the new
received frame,

It should be noted here that if the neighboring
emitters are not completely disjoint in DOA or
frequency, they may be assigned to the same cluster.
However, inthe TOA analysis, they will be identified
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as disjoint emitters.

Deinterleaving Based on TOA

The next task is to compute the pulse repetition
pattern of an emitter by using the times of arrival for
the pulses in a given cluster. This information will be
used for emitter classification. The algorithm in this
part can extract any of constant, jitter, staggered, or
dwell switch PRI patterns.

First, we describe the scheme for extracting the
possible PRI pattern from the pulses in every given
cluster. Note that there exist many common pulses
in the PRI pattens. Second, we combine all the
obtained information about PRI pattems to identify
possible emitters. Some of the subsets of information
could cluster the emitters with a given degree of
confidence. Addition of previous information can
improve performance to some extent. Assuming that
the pulses contained in a given cluster form a train of
frames with N pulses, the basic steps are described
below:

1) Pattern Extraction for the Constant PRI: It is
known that for an emitter with constant PRI of period
T and the starting time of T, _,, TOA of the pulses is
in the form of (T + T, T, + 2T, T,  + 3T,...).
Therefore, if the frame contains an emitter only with
a constant PRI, by calculating TOA difference
between any two adjacent pulses, called the first
difference, the PRIcanbe identified. Also by finding
the difference between TOA of the first pulse and the
computed PRI, the starting time, T, __, can be obtained.
Howéver in real environment there can be many
pattems in each frame. Also, the two adjacent pulses
could be from different patterns which are interleaved
based on their TOAs.

Now, let ¢/i] and #/j] be the TOAs of the first and
the second pulse respectively, of an emitter with a
constant PRI. Then, the algorithm looks for a group
of pulses that form a periodical pulse train, with the
periods T and the starting time of T, by the following
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relations

T=1fj] - #i] 3
T, =ti]-T @

The number of pulses of this so called emitter, n,
can be computed by

n= t[N]'TM1 (5)
T

To determine the constant PRI pulse train with ¢/i]
and /] as TOAs of the first and the second pulses in
this train, we have used the algorithm shown in
Figure 3. The process is repeated until the extraction
of all possible constant pulse trains from the original
frame.

To improve the reality of the simulated data and
the performance of the algorithm, It is assumed that
x percent of the pulses in the ideal pulse train could
be lost. Then a threshold P, of the total pulses in the
frame has been checked in the algorithm. P, can be

chosen as

P, L« 6

where

a=100-x )
100

To improve the accuracy, we can choose P, <c, but
this increases the processing time.

2) Pattern Extraction for the Jitter PRI: Jitter
analysis is performed like the constant PRI.
Therefore, the flowchart of Figure 3 has been
utilized in this section with a small modification.
The only difference is to replace kT + T, with
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Tstart = t[l] -T
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t;-l."lj ' Tll.':.-!
Al = ==
T
3

Is
there kT + Tatart in
the input pulses frame?

k<mn

ctr =ctr +1

No

Mo

Yes

Frame contains a
constant PRI

END

Figure 3. Algorithm for extracting constant PRI pattern

the nominal value of the deflection given for the jitter.

3) Pattern Extraction for the Staggered PRI: In
the staggered PRI of the level tWo, the value of two
PRI’s T[1] and T{2] are specified. In this pattern the
TOAs of the pulses canbe considered as (T, + T[1],
T, +T[1] +T[2],T, +2T[1] + T[2],...). I t[i],
t[j], and tfk] are the TOAs of the first, second, and
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third pulses, respectively, coming from an emitter
with the aforementioned staggered pattern, then we

can write
T[1]=t[k] - t[]] ®
T[2] = 1fj] - t[i] &)
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e

T(1]=t[k]-t[;], T[2]=t[5] — t[]

x

Totare = ti] - T[1]

N t:_.ﬁ— Titar
T T+ T[2)

o

c=0, ctr =0, sum = Tsart

i ]

1[ c=c+1,b=0

*

—4£=b+1, sum = sum + T'[b]
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there sum in

Yes

the input pulses frame?

ctr =ctr + 1

Frame contains a dual
staggered PRI

Figure 4. Algorithm for extracting staggered PRI pattern

T, =il -T[1] 10§
The number of pulses of this emitter, n, is equal to

ot IN]-Tou, an
T[1]+T[2)

For the staggered PRI of level three, the algorithm
shown in Figure 4 has been used. This algorithm has
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been easily extended to identify staggered PRI of
higher level. This can be done by considering n+1
received pulses as the first n+1 pulses of a staggered
PRI of level n. Itis also possible that there exist more
than one staggered PRI pattern in the given frame. By
changing those pulses that we have used to determine
PRI pattemns (¢{i], t[j]....), all the possible staggered
PRI pattemns can be extracted.

4) Pattern Extraction for the Dwell Switch PRI
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Dwell switchPRIs can be identified by the parameters
such as T{1] (the value of the first PRI), nf1] (the
frequency of the first PRI), T[2] (the value of the
second PRI), n{2] (the frequency of the second PRI).
TOAs s of the pulses in such a pattern can be written as
(T, +T(1]...T, +nf1]T(1],T _ +n[1] T[1] +
T2},...T, +n[1]T[1]+n[2]T[2],...). Therefore,
if we consider #[i] and #{j] as the first and second
pulsesforthe T(1], and t[k] and ¢{1] as the first and the
second pulses for the 7/2], we can use the algorithm
shown in Figure 4 to determine the dwell switch PRI
patterns,

II. EMITTER IDENTIFICATION BASED ON
PATTERN COMBINATION

In this section, different extracted patterns, which
have been obtained based on the algorithm described
in the previous section, are combined to identify
possible emiters. Different combinations have been
used. TOAs of all pulses located in these combinations
have been computed and compared with the real
TOASs of the pulses in the frame. Whenever one of
these combinations has the same TOAs as the real
pulses in the frame, up to P, , the patterns of that
combination are considered as the identified emitters.
The possibility of that combination is also given. All
the information about these emitters have been saved
in a data bank.

Inorderto reduce computationtime, the operations
for pattemn extraction, and pattern combination have
been performed on the first frame. For the next frame,
TOAs of the pulses in the frame have been compared
with TOAs of the emitters saved in the data bank. If
these are the same, up to P, , the saved information
has been used for the next frame. Otherwise, patterns
extraction and patterns combination will be performed
and the information in the data bank will be updated.

For the simple cases, like the environment with

one constant PRI or jitter PRI, without extracting all
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possible patterns, emitteridentification has beendone
first. This makes the algorithm more efficient. Also,
some of the patterns which cannot combine in order
to produce a combination are considered separately.

III. SIMULATION RESULTS

On the basis of the algorithm described in section I,
a computer program has been designed and different
examples have been applied to this algorithm. The
results show that the algorithm is highly effective.

As an example, a complex environment including
19 emitters is illustrated in Table 4. It should be
mentioned that the emitters are considered to belong
to the four clusters. However, the nominal value of
these emitters is the mean of the data created by a
program which produces Gaussian random variables
withvarianceso,,c,,,and G, [7]forthe frequency,
DOA, and TOA, respectively. 3 percent of the
generated data have been deleted randomly.

A computer program has been used to sort the
pulses of these emitters according to their TOA.
Then, the pulses have been applied to the computer
program for the deinterleaving. P, is considered to
be .97 according to x= 3 in Equation 7. Any number
Iess than .97 gives the same result, but the process
time increases. The results of neural network
clustering based on DOA and RF are shown in Table
5. As expected, 4 clusters have been specified with
the parameters within the defined variance cfnominal
values. In this table, the number of the assigned
pulses to each cluster is given.

The assigned pulses to each cluster have been
applied to the algorithm for the deinterleaving based
on TOA. First, all possible constant PRI patterns are
extracted. Then all possible jitter PRI pattemns,
staggered PRI pattemns, and dwell witch PRI patterns
are extracted separately. Pattern combination has
been performed and the emitters are identified. Table
6 shows the simulation results for the 5 random
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TABLE 4: An Example for a Complex Environment, Frame Time =50 msec,
no. of Emitters= 19, o= .25GHz, g, = 2.5° and Orox= 508, T = 0.0ms

Source Frequency DOA PRI PRI
No. (GHz) (Degree) Parameter
1 8.2 GHz 25 | Constant | T=1.682 msce,
2 "~ 82GHz 25 Constant | T=1.83 msec,
3 8.2GHz 25 Jitter T=2.0 msec,
Tol=0.05 msec
4 82GHz 25 Staggered | T.=1.24 msec,
T,=1.63 msec,
5 8.2 GHz 25 | Staggered | T,=0.875 msec,
Ti=1.92 msec,
T§= 1.69 msec,
6 9.5 GHz 42 Contant | T= 1.56 msec,
7 9.5 GHz ) Constant | T=2.18 msec,
8 9.5 GHz 42 | Staggered | =187 msec
T,=1.20 msec
9 9.5GHz 42 Staggered | T = 1.38 msec,
T'=1.56 msec,
T§= 2.12 msec,
10 9.5 GHz 42 Dwell switch | T.= 1.65 msec,
T,= 1.43 msec,
n=3, n=4,
11 12 GHz 11 | Jitter | T=22msec,
Tol=0.05 msec
12 12 GHz 11 | Staggered | T=1.482 msec,
T'=1.795 msec,
T§= 1.706 msec,
13 12GHz | 11 Staggered | T,= 1.82 msec,
| T = 0.94 msec,
= 1.36 msec,
T 12 GHz 11 Dwell switch | T = 1.23 msec,
T,=0.652 msec,
n=2n=3,
15 12 GHz 11 Dwell switch | T = 1.15 msec,
T2= 2.25 msec,
nl= 2v n2= y
16 10.7 GHz 56 Constant T=0.875 msec,
17 10.7 GHz 56 Staggered T =1.38 msec,
T;: 1.524 msec,
1 e ot
18 10.7 GHz 56 Staggered T =1.28 msec,
T'=1.62 msec,
T;= 1.47 msec,
19 | 107GHz | 56 Dwell switch | T,= 1.45 msec,
T2= 1.75 msec,
n=2,n=4,
selected environments with the successfully detected effectiveness of the algorithm. During the algorithm
emitters. The simulation results show the full test, the number of false detected emitters was zero.
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TABLE 5: The Results of Neural Network Clustering Based on DOA and
RF of the Example of Tables 3 and 4.

Ii‘;equency (GHz) of | DOA (Degree) of | I-Vumber of the |

the cluster center | the cluster center | assigned pulses
Cluster No. 1 9.50 GHz 41.9° 147
Cluster No. 2 8.20 GHz 25.2° 147

.Cluster‘N(; 10.7 G;Iz_ N _56; - 155 Il
iCluste-r;Io. 4 12.0 GHz 11.0° 172

TABLE 6: The Results of Computer Simulation for 5 Different Environments with the Number

of False Identifications

T Detected emitters with succ;s | Falsemte; S
; Cons. : .iitt St;g, Dwel. | Cons. - Jitt Stag. Dwel._.
1| 1 1 0 o | o | o o | o0
TR o [ [ [0 [o ] |
3 | 3 1t 4 | 4 0 o | o | o |
4 1 5 2 3 [ 2 ) O_ 0 0_ - I“ 0
5 5 3 | 6 | 5 0 0 | o | o
SR I | | I i |
The case 5 in Table 6 is the simulation results of the CONCLUSION

example presented in Table 4.

It should be noted that the algorithm has been
tested for more than 100 environments. The emitter
identification has been performed without any error
emitter identification.

For the comparison between this algorithm and
that of using TOA difference histogram [3], the
example of Table 4 is applied to both algorithms. Up
to tenth order TOA difference are computed.
However, the results of TOA difference histogram
were ambiguous and the identification was impossible.
Detailed evaluation of a practical implementation of
this algorithm is required with actual scenario.
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New algorithm for high-accuracy deinterleaving
of radar pulses has been presented which can
perform in radar environments with complex signal
types. Good features of this algorithm are its
effectiveness in TOA deinterleaving and its ability to
identify different groups of possible radar with the
degree of uncertainty. The contribution of various
errors such as measurement errors and missing pulses
are considered in the simulation of the input data. The
algorithm can easily be implemented using parallel
processing to give a substantial increase in

performance.
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