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Abstract In the Manning equation the hydraulic radius can be defined as the cross-section dimension
of the shape. In pipe flow the bed shear stress is assumed to be uniformly distributed along the wetted
perimeter which cannot be true in open channel flow. Hence, three approximations of the true boundary
shear-stress distribution are examined and more practical conveyance depth or resistance radius formulae
are developed in three case to subtitute for the hydraulic radius. In this study, special emphasis is placed
on a particular channel cross-section including rectangular and triangular sections. Based on the
logarithmic velocity profile a formula for a normal depth of this particular channel section is also
developed it is shown that the shear stress distribution may be calculated with sufficient accuracy by
simpler approximation methods. Finally, a presentation is made of a numerical example comparing the
proposed formulae to the classic hydraulic radius concept.
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INTRODUCTION

Chow [1] is a good source for the Manning formula.
Up-to-date papers and discussions may be found in
Yen [2] who collected papers for the centennial of
Manning's with a number of the papers concentrating
on resistance studies. Chow in his book reported
variations in the exponent for the original
experiments, and explained the choice of 2/3 as the
average, by means of tables and photographs that are
excellent aids for selecting an appropriate n for a
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wide variety of open channels.

The Darcy-Weisbach Equation, the Nikuradse
experiments, and the Moody diagram contain the
classic literature for circular pipes. A good
representation for Moody and Nikuradse diagrams
are Colebrook-White types of dimensionless
equations.

Ithas long been acknowledged that the "hydraulic
radius" concept is a poor means for determining the
velocity and shear stress distributions in a channel,

since it is based upon a uniform distribution of shear
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along the boundary. Manning's formulais anempirical
formula which may be derived from Nikuradse's
semi-analytical formula for the Darcy-Weisbach
fricition factor for circular pipes flowing full in the
rough turbulent flow range as demonstrated by
Henderson [3], and later discussed by Christensen [4]
based on Nikuradse [5]. The range proposed here is

5<R /k <340 {1
and approximately
uk V>70 @

in which R, is the hydraulic radius defined as
cross-sectional area divided by wetted perimeter
= A/P); k, is Nikuradse's equivalent sand
roughness; u, is the friction/shear velocity; and v
is kinematic viscosity. The discrepancy between
Manning’'s and Nikuradse's equations is just a
few percents. The turbulent transition range is

S5<u,k,/v<70 3

Itis otten permissible to extend the application range
of Manning's formula. Strickler [6] and Meyer-Peter
[7] came to this important point that Manning's
roughness coefficient # can be related to roughness
element size, and proposed the following 1/6 power

formula
ki® (ST system) (42)
n=-—£ system a
25.6 Y

Kamphius [8] in this literature survey on sediment
transport showed that can normally be assumed
the Nikuradse's sand grain roughness as follows
using experimental data

k=2d (4b)

90
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which is used by the majority of researchers although
such authors used d,; instead of d,,. An up-to-date
discussion of Equation 4a for n is given by French [9]
RangaRaju[10] and Yen[2].Itshould be remembered
that Nikuradse's friction factor formula based upon
the Prandtl mixing length theory, was developed for
rough turbulent fluid flow range in full flow circular
pipes. We shall argue on Nikoradse's sand equivalent
concept in this study. The wall shear stress t,, a time-
mean value, is constant along the wetted perimeter in
such pipes which is expressed by the bed shear stress
formula

T,= YRS, G)

where yis the unit weight of fluid; and S, is the energy
grade line (egl) or energy line slope. As Figure 1
indicates, however, in open channel flow, the shear
stress, B, is equal to zero at the water surface and
increases along the wetted perimeter up to vertical
center line of the channel cross-section. The distribu-
tion of boundary shear stress around the wetted
perimeter of a channel is influenced by many factors,
notably the shape of the cross-section, the longitudi-
nal variation in planform geometry, the sediment
concentration and the lateral and longitudinal distri-
bution of boundary roughness[11]. The spatial average
of the boundary shear stress, T, _ distribution can
also be seen in Figure 1.

O.ave

In this figure, the horizontal x-axis is assumed to be
located on the water surface beginning at the left
bank. The distance from the left bank measured along
the wetted perimeter is denoted s. The maximum
values of s and x are P and B, wetted perimeter and
top width of free surface, respectively. The maximum
depth of the channel at the centre of the symmetrical
cross-sectionish__ .

The isovels (curves of constant velocity, dashed
in Figure 2) and orthogonals to the isovels in a
uniform flow assumption are shown in Figure 2. It
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Legends:
— wetted perimeter

—— distribution of 1,
...... distribution of 1y ave

‘igure 1. Boundary shear stress distributions comparison.

an be proved that the local bed shear stress, T,, may

in which S, is the bed slope (S,= S, foruniform flow),
and dA is the area between the adjacent orthogonals
meeting the wetted perimeter at s=s and s=s+ds {12].
The local velocity is constant along the isovels.
Because of the smaller value of the bed inclination 6,
in such sections may be replaced by dA/ds
approximately in Equation 6, hence the local vertical
depth, h, giving

h=1t,/vS, )

In flat and fairly flat sections the isovel curves as-
sume that they are parallel to the wetted perimeter
which is a reasonable approximation. It leads to

Equation 6 in the following form
T,=YZS, 8)

where Z is the distance, normal to the s direction from
W.S. as shownin Figure 2. It can be seen that the local
radius of curvature of the wetted perimeter is very
long compared to the depth. According to Equations

e given by 7 and 8, the two depths intended to substitute the
hydraulic radius in the Manning equation are devel-
yd ASs oped as follows for a particular cross-sectional shape
= S—— (6) . . R .
ds including rectangular and triangular. They are re-
CL
k B/2 ;
W.S. Orthogonals !

h_3

h max

——
b B8 b

Figure 2. Definition of isovels and orthogonals.
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ferred to as the conveyance depths of the R , and R,
and the second order R ..

CONVEYANCE DEPTH OF THE
FIRST ORDER

With regard to the bed shear stress distribution for-
mula, based on Equation 7, the mean of the time-
meanvelocity, u_, may be given by Manning's formula
as follows

2/3
um=LR v/
n

s4/? (SI system) ®
where R is the unknown conveyance depth of the
firstorder. Keeping inmind that the almosthorizontal
shear stress acting in the verticals in this case must be
nearly zero, the spatial mean velocity in the vertical
of the depth, may be written

ums=Ln*? 55" (SIsystem) (10)
Integrating u_ over the total width of the cross-
section area and substituting the result into Equation
9 yields

B

um=_1_ . um'di=.l_ .. .1_y2’3s(§/2.ydx=1_Rv So
A A A : n n
an
or,

B 3/2

Ry=|L] y2/3%% (12)
A 0

Equation 12 is the general formula which is known as
the conveyance depth of the first order. This formula
isnow examined for the cross-section and thenR, and
R, are compared for this particular section. Consider
the symmetrical cross-section shown in Figure 3.
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2/3,1/2

Comparison of the three prediction methods for
the shear stress distribution is also indicated in this
case. '

For the section shown in Figure 3, the
corresponding formula for the cross-sectional area,
wetted perimeter, and hydraulic radius are

A= -‘;—(hm+ ) 13)
P=Zh+$ (14)
Re=d = B (/in + 1) as)

Using Equation 12 for the cross-section considered

carlier yields
B LL : -
=Ly _f;“"[b_hrh..wr .
Al, \Bihoa+ b} 0 R
@16)
in which
y=h+%(hm-h) an

is the local depth of the cross-section at an arbitrary
point along the wetted perimeter, and x is the horizon-
tal distance of the element from left bank. After a
simple integration, the result is

3/2

Ry=|—3— [t 1" (18)
4 (o - 1)

For given values of 6, Q, B, n, and longitudinal bed

slope, S,, the normal depth, h_,_, may easily be

computed by introduction of Equations 15 and 18,

into the following Manning's equation for R
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Legends:
—— Ry-method

----- R,-method
........ R,-method

H "X

p-distnbutions

Figure 3. Channel cross-section, boundary shear stress distribution.

0=L4r}’sq? (19)
and foar
Q=;11-AR2VI3SIJ2 (20)

Using Equations 15 and 19, the normal depth of the
channel will be as follows

2/5

(h+ B\ 3/5
P = COS O (ﬂ) -h Q1)
B/2 Vs

and similarly, from Equations 18 and 20, the
normal depth of the channel will be as follows,
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3/8

810 o hy+n¥? 22)

3psY?

hm(u =

Equations 21 and 22 give normal depths in

uniform flow related to R, and R, respectively.
Those equations also cover the triangular (h = 0)
section.

ENGELUND METHOD FOR A
CONVEYANCE DEPTH

Assume the bed shear stress, T, along the wetted
perimeter is a constant value. In the case of open
channel flow, this assumption is incorrect, however
Engelund [13] intended to investigate the effect of
nonuniform shear stress on the applicability by power
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Figure 4. Cross-sectional area and element for integration
scheme

formulae. Figure 4 indicates the cross-sectional area
of water surface.
The area of the cross-section is given by

B
A=jdA=J ydx 23
A 0

inwhich A is the area; B is the width of water surface;
andy is the local depth. Because of the usually higher
value of B compared to the depth in open channel
flow, the length P of the perimeter is approximately
equal to B, hence

=Hn (24)

=

[
~ >

mn
@ >

where H_ is the mean depth of the flow in channel. It
would therefore be a reasonable approximation to
propose that the local boundary shear stress, T,
proportional to the depth can be calculated from

1,=YRS, =7yS, 25)

in which vy is the water specific gravity; S, is the
channel bed slope and R, is the hydraulic radius. It
has been shown that the power formula for the flow
in open channel will be very inaccurate [13].
Altematively, we shall now investigate the possibility
of replacing the hydraulic radius with a value such as
R, which is known as the resistance radius or
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conveyance depth as given by Engelund method. He
proposed the following formula for R,

B
ﬁeT=L’ y¥2 g (26)
A [

For wide rectangular channels y=H_=h, and
A= Bh, from which

R=h=R Q7

r h

and for triangular sections, it can be seen

R=0.64(h,, - h)= 1.28R, (28)

Equation 26 may be used for a particular cross-
section shown in Figure 6. Using Equations 13 and
17, Equation 26 gives

2
Rr=|—24 _ (a-1"? 29

S (s - 1)
and from the Manning Equation as follows

2/3

0= 1 ARYsY (30)

and also using Equations 29 and 30, the normal depth
may be obtained

210/ B VSo)
4 52,8
[—'_2(hmax'h 2)]

5(n2m - "3

-h (€ ))

Hnax =

It should be noted that there is no significant differ-
ence between Engelund method and first order con-
veyance depth method. For an arbitrary cross-section
(see Figure 4) the following formula may be given
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which is dependent upon the central gravity of cross-
sectional area and the first moment of area around x-
axis [13].

weafiod 4]

where e is centre gravity or cross-sectional centre
from water surface, H_ =h_,_is the mean depth or
normal depth, and R, is the hydraulic radius. In this
case for a shape considered R, comes from Equation
15, and e may be found as

Ae= %[h2+;_(h,2m+hhm-2h2)] (33)

and then dividing extremes of this equation
by A which is obtained from Equation 13,
yields

h2+-;:-(h,2w+hhm-2h2)

e= (34

Rmax+h

As an example, for given h=50mm, h__=70mm,
and B = 165mm, it can be seen that e= 30.278mm,
R,= 36.7mm, and R = 0.9014 R, and hence R =
33.08mm which is lower than R, by about 10%.
It can be suggested that for calculation of the
mean velocity and also discharge passing a
cross-section, R_may bereplaced by R, inManning's
formula. The advantage of using the resistance
radius instead of hydraulic radius is that we get
a logical coherence between the normal hydraulic
power formulae and the theoretical basis, and that
of the cross-section is taken into account [13].

CONVEYANCE DEPTH OF THE SECOND
ORDER

Based on Equation 8 and assuming isovels parallel to
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the wetted perimeter and a substantial radius of
curvature of the wetted perimeter when compared
withlocal depths, the conveyance depth of the second
order may be defined. Because of the influence of the
curvature radius, deriving a simple formula for a
general cross-section is much more difficult in this
case [12]. In current study, the development of a
formula for R in therefore limited to a particular
channel cross-section including rectangular and
triangular sections considered earlier. To simplify
the problem, it is assumed that the local shear stress
in the flow direction is equal to zero along the
bisectors of the angles between walls and angular
slopes. This simplification is reasonable in open
channel flow; see for example, Knight, Yuen and
Alhamid [11]; Knight and Lai [14]; Patel [15]. The
cross-sectional geometry considered is shown in
Figure 5.

There is a limitation in this case that a bisector
intersects on the water surface before intersecting the
bisector from the other half of the cross-section. In
other words, it can be implied that

B>2h (35)

For more detail readers may refer to Keulegan [16]
and Christensen [17].
The area elements dA considered in Figure 5 are

dA,= z,ds,= s, tan B ds, (36)
dA,= z,ds,= s, tan B ds, 37
in which

=40 (38)
p 4 2

for this particular shape, The Manning formula with
R instead of hydraulic radius, R,, may now be given
by
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um_L 4350 2= L] up s dA (39)
AP

in which

umsz——(s tanﬂ)”3S

0.<s2<h)  (40)

and

um,sz=%(s2tanﬂ)ﬂ3S&/2 O.<si<h) (@)

Equations 40 and 41 are approximations subject
to the assumption of isovels being parallel to the
wetted perimeter made in this cross-section.
Equation 26 may now be extended as

h
ums——Rn S _L! L(sltmﬂ)S/aSOuzdS]v
A'on

i/ L (s21an B 93 8¢ 2d92+%<( 142 s
b
2

ﬂ(2 Cos6

- P h}} 42)
Hence the following Equation can easily be derived

AR =3 1% (1an BY” + 22 B”Zm+htm/3(
2

Aone - h)]

2Cos 8

43)
and eventually using Equation 13, R, may be ob-
tained as follows

Ro=|—3 k% (tan ByP v 2hom [B_h"'"‘ +
B (R + 1) B(Hps + ) 44
5 44)
k tan ,B( <R - h)]\‘
2 Cos 6 f

Equation.44isthe R -equivalentof Equations 15 and
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canbederived
by using Manning's Equation and Equation 44

18. The corresponding formulaforh__

2nQ/(Bm

B i
3 h"/"(zan B)" + n 23| Bhma +htanﬂ( -h,,,,-h)]
2 2 2Cos 6

(45)
Equation 45 is the normal depth equivalent using R
as in Equation 21 and 22. A similar equation can be
derived for the narrow channel case; i.e. when

B <2h (46)

All equations mentioned can be solved by a simple
numerical iteration method using the following first
estimate for the indeterminate h__

35
hm=(ﬂi) @7

To support the above mentioned method to define a
simple formula for the hydraulic radius, the follow-
ing example may be demonstrated. Bisectors and
secondary flows in a trapezoidal open channel may
be seen (Figure6).

In the case of trapezoidal cross-section, bisectors
are drawn at the meeting point of the bed and wall. It
can be seen that these bisectors are as orthogonals and
there is no interaction among the secondary currents.

LOGARITHMIC VELOCITY PROFILE FOR
THE CROSS-SECTION CONSIDERED

The adoption of a logarithmic velocity distribution
along a normal to the boundary in an open channel
was introduced by Keulegan [16]. However, instead
of the local friction velocity he applied the mean
frictionvelocity overthe solid boundary as a“reference
velocity”, [12], as used in Equation 53 related to the
velocity distribution. Limitations of the methods

International Journal of Engineering
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Figure 6. Typical relationship between boundary shear stress distribution, secondary flows, primary flow Fr=3.24, Asp=
B/H=1.52 [11}, and bisectors at the joining point of walls and bed in a trapezoidal channel.

discussed in the preceding sections were the rough flow range and the range of roughness showed by
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V}y

Figure 7. Element scheme for Integration over cross-sectional
area.

Equations 1 and 2. This range is the ususal range for
the majority of open channel flows. “The constraints
imposed by Equation 1 and the limited accuracy of
the Manning formula as an approximation to the
generally accepted logarithmic formula for the Darcy-
Weisbach friction factor, may be avoided by
neglecting the Manning formula, or any other power
formula for that matter, and basing the flow formula
directly on the logarithmic formula as practised in the
UK?” [18]. Consider the symmetrical cross-section as
shown in Figure 7.

A simple formula for the above-mentioned cross-
section developed from Nikuradse's logarithmic ve-
locity distribution in the rough flow range.

The shear velocity may be written

u»»=Y gySocos@ 48)

where u,  isthe shearvelocity andy is the local depth
of the element shown in Figure 7. The value of y can
be given by Equation 17. Combining Equations 17
and 48, yields
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Logarithmic

1

Non-viscose sub-layer or buffer layer

WWLh
Figure 8. Logarithmic velocity profile for rough boundary.

) =.[ 2% (s - ) }1/2
U x '\g[h+——B ]Socose 49)

Considering Figure 8, Prandtl's logarithmic
velocity distribution law is applicable to rough
boundaries which is valid for Equation 2, as
follows

u 1Y
e, oK = (50)
Yo

in which x is the von-Karman constant, and y~ is the
vertical distance from bed. Assume

Yo=TKs ¢y

where 1 is a constant (i.e. y 7, directly proportional to
the size of roughness excrescence's k). Inserting
Equation 51 into Equation 50 gives

u =1 pd L
L "lnkg Linn (52)

Using this approach, investigators have experimen-
tally obtained values m of 1/30 and for x of 0.4.
Inserting these values, the velocity profile in the
vertical located at x = X may be given by

U =85+25Ind (53)
u ks

*' x
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TABLE 1. The Result of a Numerical Example Obtained for Comparison of the Proposed Methods

Normal
Method | Depth, | A(m? | Radius, Vel.,

h, (m) R(m) | %m/s)

Area,l Hydraulic| Meanl Reynoldsl Froude, Friction | Shear Shear
R°10¢ | F

Factor, Velocity, | Stress,
f u-=YgRSy |To=put

R, 1520 | 4.623 0.791 1.082 | 3.003 0.280 | 0.0529 0.0881 7.762
R, 1.343 | 3916 1.017 1.277 | 4557 0.352 | 0.0491 0.0999 9.980
R, 1342 | 3912 1.012 1.278 | 4538 0.352 | 0.0450 0.0996 9.920
R, 1.300 | 3.744 1.085 1335 | 4530 0374 | 0.0476 0.1074 | 11535
|_L_0g 1366 | 4.008 0986 | 1.248 | 4.318 0.341 _0._0497 0.0983 | 9.670
| | —[ | | |
] I N A A
Ratio, | Ratio,| Ratio, |Radio,| Radio, | Radio, | Radio, Radio, | Radio,
Method | k___ AlA, | RR, | wa, | R/R, | F/F, | ff, ulu, 1),
hmll
| =
R, 1 1 1 1 1 1 1 1
R, 0.884 0.8469 1.286 1.218 | 1.517 1.257 | 0.9282 I 1.134 1.286
R, 0.883 0.8462| 1.379 1.177 | 1511 1.257 09263 1.131 1.278
R, 0.855 0.8099| 1.372 1.234 1336 | 0.8998 1.219 1.486
| Log | 0.899 0.8668| 1.247 1.153 | 1.218 10.9395 | 1.116 1.246
R -Method; Equation 31 together with the Equations from which those values
have been obtained.
= 1.976 -h (63) Note 1: g= 9.807 (m/s?), p = 1000 (Kg_/m?),
(_20-8_2)( ey 2)] T,=20°C, and v= 0.00000114 (m%s).
Homax - h = e
e Note 2: Amax | hmaxs AlA,, RIR,, 4[%h R/R,, FJF_,
fif,» uJu,, andt,/ t, are ratios of normal depth, area,
R,-Method; Equation 45 hydraulic radius, mean velocity, Reynolds number,
Froude number, friction factor, shear velocity, and
h = 1.976 SEN— | boundary shear stress of eachmethod over traditional
2. 71713 + W22 [2hma +1.428h (2.128 - Ay - b)) ) , .
hydraulic radius method, respectively.
(64)
Log-Method; Equation 59
CONCLUDING REMARKS
5/2 ... . . .
hmax = h+.0768 [h i (I 1 him + 4.639) (65) The use of the traditional hydraulic radius which was
Bl (nh+ 4.659)] derived from pipe flow analysis is very inaccurate in

The h__ values, the corresponding cross-sectional
areas, R related to methods, and also the correspond-
ing mean velocity, Reynolds and Frouds numbers,
friction facor and velocity, shear stress, and finally
the ratios of these parameters are shown in Table 1,

138 - Vol. 10, No. 3, August 1997

open channels. From the values obtained using the
five methods compared in the preceding section,
there is a clear difference between the hydraulic
radius method and the others. It can also be seen that
taking the boundary shear stress distributions when
using the Manning equation does not have a insignifi-
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cant influence on the results. This is because the
boundary shear stresses are small.

Considering normal depths, areas and hydraulic
radius ratios presented in Table 1 show the differences.
For example areas derived from the local normal
depthmethod show that the vertical depthmethodR ,
Engelund method R and the local normal depth
method R_ give the percentages such as 11.6%,
11.7%, and 14.5% smaller than those found by con-
ventional hydraulic radius method. The logarithmic-
method yields results in the same range as the R -
method. This method however is of a more general
nature, because it is not limited to the roughness
range proposed by Equation 1, that is restricting the
use of the Manning Equation. Computing velocity
and shear stress distributions and comparing them
with those obtained from the work done by other
people by the way of 2-D methods will be very useful
to evaluate the results of the methods presented inthis
study [11]. By means of the logarithmic-method
which seems to be the simplest and most accurate
method on the basis of Prandtl's mixing length
theory, it can be seen that the R_-method is sufficient
for most practical purposes. By this method, the
boundary shear is computed directly from the area
between bisectors and normal to the boundary. It
should be emphasized that this method gives quite
good results if we assume that the channel profile is
smooth. The other useful oarameters for comparison
purposes is also shown in Table 1. This work needs
laboratory experiments before the Equations can be
recommended for general use.
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NOTATIONS

The notations used in this study are defined where
they first appear and in the following list:
A L%

: Cross-sectional area

B [L] : Top width of the channel

e [L] : Central-gravity of cross-sectional area from
the water surface

g [LT3 :Gravity acceleration

H [L] : Mean depth of the cross-section (=A/B)

h [L] Water depth of the wall part only

h, [L] Water depth of inclined part only

h . [L] Water depth of inclined part only

k, [L] Nikuradse's equivalent sand roughness

n [-] Manning's roughness coefficient

P[] Wetted perimeter

P, [L] Bed wetted perimeter

P, [L] : Wall wetted perimeter

Q [L*T'] :Discharge

R, [L] Hydraulic radius or conveyance depth in
hydraulic radins method

R, (L] Hydraulic radius or conveyance depth in
normal depth method

R, [L] Hydraulic radius or conveyance depth in
vertical depth method

, [L/L] : Longitudinal bed slope

S, [-] : Distance measured along the wall part of
wetted perimeter of the channel

5, [] : Distance measured along the sloping part
of wetted perimeter of the channel

S, [LA] :Longitudinalenergy grade line orbed slope

u [LT] : Velocity

u, [LT'] : Friction/Shear velocity

u, [LTY] :Friction/Shear veloicty in the boundary

u, [LT'] :Mean of the time-mean velocity

u . [LT']  :Mean velocity in the boundary

y [L] : Local vertical depth at x = x
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y* [L] Vertical distance from the bed
y,” [ . A parameter which is proportional to the

roughness excrescence (y,"= k)

Z [L] : Distance normal to s direction from W.S.
z, [L] : distance between wetted perimeter and
bisector along to the wall part
z, [L] - Distance between wetted perimeter and
bisector along to the sloping part
n [ : An experimental coefficient for k_in
mixing length theory
[--] Angle between bed parts and horizontal
[--1 : Angle between bisectors at the point of wall
and bed junctions
x [--] : Universal constant charcterising the turbu-

lence or von-Karman constant

v [L*T] :Kinematic viscosity of water

] [ML?] : Water density

v  [ML?T?]: Unit weight of water

©  [ML?*T?}: Shear stress in direction of flow

1, [ML?T?]: Boundary shear stress

1 [ML?T?]: Shear stress in direction of flow at

=)

boundary
T, ,.. [IML*T?]: Spatialaverage of the boundary shear stress
along wetted perimeter
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