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Abstract
by their lead time, price and quality (random yield). Each purchased item is acceptable with a given

In this paper, we develop a procedure for selecting a supplier. Suppliers are characterized

probability and independent of the others. We assume the demands are deterministic with no set-up cost
and backordering ts allowed. For each supplier, an optimal ordering policy is developed. We prove the
optimal policy 1s myopic if the value of items remains constant.
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INTRODUCTION

During the last decade, the concept of procurement man-
agement has evolved significantly. The main cause of this
evolution is rooted in the popularity of the just-in-time
philosophy. After the success of Japanese firms in interna-
tional competition, their manufacturing system has been
the focus of intensive study. To compete with them, many
American and European manufacturers have implemented
the principles of JIT.

Because of a heavy reliance on suppliers, purchasing is
an important part of any manufacturing system. Although
American original equipment manufacturers (OEM), fab-

ricale more parts in-house than Japanese, fifty percent of

dgales

the cost of goods sold by them goes on the procurement of
raw malterials, parts and components.'

In terms of the number of parts purchased by a typical
OEM, the reliance is even heavier. Therefore, the role of
supplier is very important, and two of the major issues of
manufacturing strategy are ‘“how to select a supplier’” and
*‘the supplier’s contract.”

In the Japanese system, the number of suppliers for
each part is limited, and usually is only one. On the other
hand, the number of deliveries made by a typical supplier
is frequent, as much as one a day. A long-term stcady
relationship with suppliers is another important issue of
that system.

For American firms, itis difficult or evenimpossible to

'About seventy percent of the cost of goods sold by a typical Japanese OEM is represented by purchasing, sec |S].
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adapt the Japanese principle of purchasing management
completely, because of the ditterence in culture, business
environments, historical and traditional relations between
firms and cven the existing laws. One difterence is the
location of the supplicrs. In Japan, the suppliers have
usually established their plant very close to their OEM,
while the supplicrs of American firms are scattered allover
the country, and some of them are even located overseas.
Thercfore, the Amcrican manufacturers are facing longer
lead times, and for them, safety stocks are more important.
The sccond difference hetween the practice of purchasing
management of these two systems is the number of suppli-
ers foreach part. Americans do not rely on a single supplier
and usunally purchase from multiple sources. In this way,
they gain a better bargaimng power to get more discounts
or higher quality. By comparison. the Japanese have dealt
with fewer suppliers, usually just onc. By establishing
long-term relationship, asupplier is considered as part of

the OEM’s family. The supplier improves quality or re-

o

duces cost by coonerating and working
duces cost hy cooperating and workiny

OEM.

The main objective of this research is to develop a

“losely with the

procedure for the selection of a single supplier with the
lowest long-term cost. Although it is not obvious that
outside of the Japanesc business environment a single
supphier always performs better than multiple ones, we
restrict our attention o the case where the firm can select
exactly one supplier and is willing to establish a fong-term
rclationship with the supplier. Suppliers are characterized
by their price, lead time and guality. Quality is measured
in terms of the percentage of defective items in a supplied
hatch. After receiving an order, the items are inspected
against certain standards, and some are labelled as defec-
tive. The defectiveness of each item is independent of the
status of the other ones. The manufacturer can use only
aceeptable (non-defective) items and there 1s no way of
knowing the quality of the items before receiving them.
Sometimes, the suppliers cannot deliver all of the items
that have been ordered by the due date. This may happen

because  of  many uncertainties  surrounding  the
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manutacturing environment of the supplicr. In this casce,
the undelivered parts are also considered asdefective. One
special case is when the parts wre tabricated in-house,
rather than ordering outside and clearly some parts are
defective. A variety of reasons may be the cause of
defectiveness [12].

Although the motivation for this research was to work
on the strategic issue of selecting a supplier, it hecame
Clear that it was necessary (o study the quality factor of a
supplier first. Therefore, we have to deal with two difterent
tactors. The first one, an operational issue, 1s basically an
inventory problem with an unreliable supplicr (with ran-
dom yield). Then the results can be used o selecta supplier
as well as to analyze the impact of supplier quality on
production planning. As can be seen. the second issuc is a
strategic one.

In the first part of the paper. an ordering policy is
developed tor asingle supplicr when the quality of deliv-
ered items is not perfect. Although we handle this part
the long-term relationship, our assumptions regarding the

I
costs are based on the conditions of the main issuce. In this

policy forasingle period that depends on the number of on-
hand and in-transit  inventories. Then. by applying dy-
namic programming itis shown that for mulliblc periods as
well as the infinite horizon problem, the optimal policy is
amyopic one anditis the same as for the single period case.
For this part dynamic programming is applied and the
objective is to maintain the minimum average cost of
operation.

In the second part of the paper. a procedure for the
sclection of a supplier among the different choices is
developed. To compare the suppliers™ long-term average
costs, a Markov chain maodel is defined to deteanine the
expected cost of the long-term operation over all different
states. Then we show that under the optimal policy the state
space is practically limited within a certain range. To
obtain the limiting probabilities of different states, the

resulting simultaneous linear equations arc solved by a
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linear programming model.
Literature Survey

Although there has been a lot of work related to the first
part of this research regarding random yield, not many
researchers have workded on the second part of the prob-
lem, Gerchak ef al. [4] explored properties of the solution
structure of an inventory model with variable yield and
uncertain demands. In their model, however, the lead time
was zero and the planning horizon was finite. Henig and
Gerchak [6] investigated the existence of some critical
order points under similar assumptions. Only Ehrhardt and
McClelland [3] consider positive lead times and come up
with a heuristic procedure. Yano and Lee [15] review
extensively the literature on lot-sizing withrandom yields.

Turning to the issue of supplier selection, a few re-
scarchers have looked into this matter, although from
different angles from our own. The pros and cons concern-
ing a single supplier versus multiple suppliers outside of
the Japanese business environment, are discussed by Buffa
[2] and Ouchi [9]. Tang [14] considers the impact of
demand variation on the number of suppliers. Ahmadi and
Tang [1] study dual provisioning. They develop a model
for allocating production quantity among in-house and
external suppliers. Lee and Zipkin [ 7] consider the make or
buy decision. Moinzadeh and Nahmias [8] suggest a
heuristic policy for an inventory model for two suppliers
with different lead times. In their model, however, it is

assumed the supplied items are all non-defective.

SINGLE SUPPLIER, SINGLE PERIOD

In this section, we consider a single period problem and
develop an optimal policy to order from a single supplier
with random yield. Subsequently, we will show that the
same policy is also optimal in a dynamic environment. By
a single period, we mean that we are concerned about the
decision made in period one that has an impact on the cost
of period (T+1), where T denotes the lead time in terms of

the number of periods, and T =1.
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Assumptions znd Notation

We assume there exists only one supplier of a particular
raw material, part or component of a product. Price and the
lead time of the delivery are given. Demand is determinis-
tic and constant. Each item delivered by the supplier is
acceptable with a known probability. Backordering is
allowed. The objective is to determine the size of order to

minimize the total expected cost.

The following notation will be useq;

d deterministic demand per period

h unit-holding cost per pertod, including the cost of
capital

k unit-shortage cost per period

p probability that an item supplied is acceptable
and g=p-1

c unit price of items delivered (defective or accept-

able) so the unit value of an acceptable item is ¢/

p
T lead time in terms of the number of periods
Y the tot:gl number of non-defective items of abatch

of size n. Y is a binomial distributed random

variable with parameters (p, n).

State of the System

At the beginning of the period, we define the state of the

system as follows:

S=(5,5,5,..,5) (1)
where,
s the number of items on hand (positive or negative)
after satisfying the demand of the first period
s, the number of in-transit inventories expected to

arrive at the beginning of period u (non-nega-

tive).
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We also define,

x the size of the order

i the total number of items in-transic before the
order. i.e., i = Si-) 5]

] the total number of items in-transit, after the

order. e I =7+ x

We assume, at any time during the planning period or at
the end of it, the value of inventories remains unchanged.
Adter the planning period, the extraitem can be sold at the
purchase price. That s, the expected value of any accept-
able item on hand or the expected cost of any backordered
item is (¢/p). This assumption is justified by the fact that
the objective of the model is to establish a long-term
relation with a sclected supplier of a particular part that
will be needed for along period of time. Therefore, itis not
expected that particular items will be obsolete after this

period.
Single Period Cost Function

The cost of any period consists of two components: the
expected shortage and holding cost and the expected cost

of depleted inventories.

a) The Expected Shortage and Holding Cost of a single
period is represcnted by L(S, x). and,

LS x)=kW (S, x)+hW (5 x) (2)
where,

W (5..x) = the expected number of shortages at the end of
period 7. provided the state of the system is S attime zero
and the size of the order at that time is x,

W (5 x)= the expected number of items exceeding the
demand at the end of period T, provided the state of the
systemis Sattime zernand the size of the order at that ime
18

By conditioning on the nimber of the acceptableifems

98 - Voi. 6, Nos. 2 & 3, August 1993

received out of { + x in-transit items, (i.c.. ¥, ) itcan be

{1+x)

shown, that

Td-s-|
W (S.x)= Y (Td-s-/)PYun=/] (3)

=(}
and, !

W(Sx)= > GTd+)PWao=il (@)
j=Td-s
Therefore, (Td - s) indicates the upper bound of the number
of items needed to satisfy the demand of the next T periods
provided every in-transit item will be defective.

As can be seen, L(S, x) dependsonlyonsand I =i + x
and is independent of the individual componentof (s, s, ...
. 5, x). Theretore, we express the expected shortage and
holding cost of a single period in terms of these two

quantities only, represented by [ (s, 1), i.e.,
(s, )=L(§, x).
b) The Expected Cost of Depeleted Inventory

The price paid for the ordered items is not considered as a
part of cost. The reason is the assumption made before, that
1he value of items on-hand or in-transit remains unchanged,
even after the planning period. Therefore,when cx is paid
for the price of an order of size x, then simultaneously, the
valuc of the inventory will be increased by the same amount
and the total asset remains unchanged.

On the other hand, during any period, d units of inven-
tory are consumed, so the expected cost of the depleted
inventory is cd/p.

Therefore, the single period cost function will be:
C (S x )="/—)‘1+L(S,,\') (5)

Since the first term is constant, minimizing the cost func-

tion is the same as minimizing the second term.
Optimal Policy

To determine an optimal policy. the following lemma and
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theorems are used:

Lemma 1: [ (s, 1) is a convex function of I for every fixed
s and so is the cost function C (S, x ).

Proof: To show [ (s, 1) 1is strictly convex, we prove A4 L =
[(s,1+1)-1(s I)isanincreasing function of /. This can be
done by conditioning on the outcome of the last item. If it
is defective, with a probability of 1-p, then A L =0.
However, if the last item is acceptable, then the inventory
level increases by one unit at the end of period 7. In this
case, we have 1o pay some extra holding cost for one unit
if the inventory is positive and save the shortage cost for
one unit if the inventory is negative. Probabilities of
positive and negative inventories are P(Y, 2 Td -s)and P(Y,

<Td-s-1), respectively. Therefore, 1t can be shown that,

AL =hpP (Y,>Td-s)- kpP (Y,<Td-5-1)
= hp - (k +h) pP (Y, <Td-s-1) (6)

Therefore,

A, L-AL=(k+hjp[P(Y, 2Td-5s)

(i+1) I+f =

SP(Y,2Td-5)] (7

To complete the proof, we have to show that the right-hand

side of the above equation is positive. This is true, because

P(Y,  <Td-s)-P(Y2Td-s)= pP(Y, = a-1) (%)

Iel ™

Convexity of the cost function is obvious when the con-

vexity of Ifs, 1) is given.

Theorem 1: At the beginning of the period, if the number
of on-hand inventory is s, then the optimal number of
intransit inventory will be I'(s) which can be determined

by the following two equations:

P(Y,,, > Td-s) > 4 9)
k+h
P(Y,, > Td-s+1)< 4 (10)
k+h
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(This is the Newsboy result, so the proof is omited).

As can be seen from the above theorem, the optimal
policy is of the **Up to Level " type. “*The Level™™, up to
which an order should be placed. however, is not the
shortage level, but it 15 calculated from (9) and (10).
Therefore, if the number of in-transit inventroy is Iess than
I"(s), order up to this level, i.c. x= I'(s)-i. In this case. I=
I'(s). Otherwise do not order, i.e, x= 0, so I> I"(s).

The existence of an optimal policy is guaranteed by the

following theorem:

Theorem 2: For any positive inventory on hand or any
finite backorder, the optimal quantity of order size isfinite.
Proof: Suppose for a given s, no finite optimal I” ¢xists.
This means, the optimal order size of X goes to infinity. In
other words, for every order of size x, we have I= i+x</’

and the following relation always holds,
I(s. I+1)-I(s, 1)<0,

or from (6), the following inequality, for every I, always
holds,

P(Y,<a-1)> -1 (1)
k+h

However, as I increases, the above inequzi]ity eventually
does nothold because the left-hand side decreases sharply.

For example, if I> a/p, then, for any integer j>0,

[P(Y,, <Td-s)<(I-p)y P(Y<Td-s)]

(I+j) —

Then, as j increases the left-hand side of (11) will be less

than the right side.

The Optimal Shortage and Holding Cost of One Period

The optimal shortage and holding cost of one period is

expressed as L'(S), or I(s,i), where

LYS)= min L(S, x) =L(S, x')
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or,

I'(s,i) Emlin, Is, 1) =l(s,i+x")

Definition 1: At the beginning of any period, we say the
state of the system is an ordering state if, following the
optimal policy, an order must be placed, i.c., if i<I’(s).

Otherwise it is a non-ordering state.

Theorem 3: At the beginning of any period, if the number
of on-hand and in-transit inventories are s and i, respec-
tively, then the optimal shortage and holding cost of a
single period has the following properties:

(a) For any "ordering" state,i.e. i <I",

I(si)=Tr(s,1) (12)

(b) For any “‘non-ordering’’ state, ["(s,i) is an increasing
function of i.

Proof: Part(a) results from the definition of ordering state
and optimality of I”. Part(b) follows from the definition of
non-ordering states and (6) and (9).

Theorem 4: For every s, I'(s,i) is a convex function of i.
Proof: To show [’(s,i) is convex, we show [*(s,i+1) -I'(s.i)
is a non-decreasing function of i, or the following term is
non-negative,

forevery sand i.
Al= (C(s.i42) - (s,i+1)] - [ U (s,i+1) -[(s,i)].

Suppose, for a particular s, I” is the optimal number of
items in-transit, Three possible case are considered:
a i<I"-2, then, by (I12),

Pis,i+2)=T(si+1)=T(s,i)= (s, I')
50, Al =0
b.i=I"-1, then, by (12) and part (b) of theorem 3,
P(s,i+2) > U(s,i+1)=[(s,i)= '(s.]")

s0 Al >0,
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c. i 2I". Then by definition of non-ordering states, {(s,i)=

I(s,i). Therefore, it is convex by lemma 1.
SINGLE SUPPLIER, MULTIPLE-PERIOD

In this section, we will show the single-supplier, single-
period policy is also optimal for finite as well as infinite
horizons, when there is still only one supplier. Therefore,
the optimal policy is a myopic one. First, we consider the
multiple-period finite horizon and then the infinite horizon

problem.
Markov Decision Process

To show the myopic policy is optimal, we set up the
problem as a Markov Decision Process. The state of the
system is S, as defined by (1). However, as was shown, §
can be replaced by a vector of two dimensional (s,i), where,
sand i are the number of on-hand and in-transit inventories
(before the order), respectively. The cost of each period is
cd 4 L(S, x) and depends on § as well as on the decision
variable x. As was mentioned before, L(S, x) can be
replaced by (s, 1) and it is independent of the period
number. It is evident the system has Markovian propertics
(see [L1]). Let’s define.

Va {s,i)=the optimal expected total cost periods n through
1, if the state of the system is (s.i).

Then, for any n>/.
Vo (5,0) = % +min { +l(s, 1)

52
+ D, P(Ys, =) Vi (s+j-d, I-5,)} (13)
=0

where,  represents the number of in-transit inventory after
the order is placed, S, has been defined by (1) and Vo(s,i)=
0, for all s and i.

Since the constant part of the cost does not have any
impact on the decisions, it can be discarded in the model.
Theretore, we defined,

Un {s.i)=the optimal expected total shortage and handling
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costof periods n through 1, if the state of the system is (s,i)
Clearly,

52
Un(sd)= min {I(s])+ 2 P(Ys2 =) Uni (s+j-d, I-5,)}
=0
(14)

It can be shown,
Vo (s.i)= Un (s,0) +n % (15)

From this pointon, we will be dealing with Un* (s,i) rather
than V: (5,0).

Theorem S: For every s, and n,

(1) There exists an I:(s) that is the optimal number of in-
transit inventory.

(2) Un (s,i) is a convex function of i,

Proof: The proof is by induction on n. For (n=1), part(1)
follows from theorem 1 and part (2) from convexity of
I"(s,i) in theorem 4,

To prove the theorem holds for n, assume it holds for
n-1. Since both terms of (14) are convex functions of the
number of in-transit inventory, then there must be an
optimal number for this quantity, which we denote by
I:(s). (Since Uni (s} is a convex function of [, then the
second term of (14) is also a convex function of I, because
itis a convex combination of some convex functions.)

Now, assume the state of the system is (s,i). If i< l,t(s),
then the order size is 1,:(s)-i and U, (si)=U, (s, I").
However, if 1 =1 :( s}, then no order is placed and because
of the convexity property, U *( s,i) 1san increasing function
of .

Very similar to the proof of theorem (4), it can be

* - - ~ - -
shown that U (s,i) is a convex function of {.

Theorem 6: For any positive inventory on-hand or any
finite backorder, the optimal quantity of order size isfinite.
Proof: Similar to the proof of theorem 2.

Now, we want to show the optimal policy is a myopic
one. In other words, I ,,=I", for every n. To do so, we take

the following steps:
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Suppose the state of the system at time zero is (s,i), the
size of the tirst order is x and the order size of uth period
isx , for u>2; then the expected shortage and holding cost

of the uth period can be calculated as follows:

a1 I

kz (a-j) P(Y]u=j)+h 2 (j-Td-s) P(Y1u=j) (16)
j=0 Flds

where,

1 _is in-transit inventory for the uth period, on based
on the information available at the beginning of tF 2 first

L , u
period. i.e. 1 =i + X | x, and,
a, =(T+u-1)d-s.

As can be seen again, this cost depends on s and /7,
Therefore, we define:

[ (s,1 ) =the expected shortage and holding cost of the uth
period, provided the number of on-hand inventory at the
beginning of the first period is s and the total number of in-
transit inventory up to the uth period is / .

Now it can be shown that the following relation holds:

Unr(s.=Y 1(s.1) (17)
n=()
where,
Ux (s, =the total expected shortage and holding costof the
next n periods, if the policy X = (x,, x,, ..., x ) is adopted,
and x_is the order size of the uth period and the state of the

system at the beginning of the first period is (s,i).

Lemma 2: Consider two policies X = (x,, ..., x jand Y=
(¥, .. y). The expecied shortage and holding cost of the
uth period of both policies is the same, if

z Xj= 2 Y

=0 j=0
Proof: The costof each policy for any particular period can
be calculated from (16). For both policies /_is the same, by
definition. Similarly, a_is the same for both policies.

Theorem 7: The optimal policy is myopic
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Proof: The optimal policy of the single period is optimal
for multiple-period cases. Suppose the state of the system
can be represented by (5,i) and the optimal order quanity
for single period is x". We will show in a multiple-period
case this optimal order quantity of the first period is still x*,
If not, let the optimal policy be Y= (¥, ¥, ¥y ..)and y, #
x". In this case, we show at least one other policy exists
which has alower cost. Take a policy in which the decision

variables are X (x", X,, X,, ...), where,
x=y+ (- x)and x =y, forj=3.
Then, following Y policy, we have,
U (s.d=lsi+y,)+ 22 L(s.1) (18)
=

However, following the second policy, the same cost will
be,

Un (s,0= U5+ X)+ 2 1 (s,1) (19)

=2
From optimality of x” for a single period, it follows that
I(s,i+x") < l(s,i +y ). The other corresponding terms of
both policies are equal from lemma 2. Therefore, this

contradicts the optimality of Y policy.
Convergence of the Average Cost

So far, we have shown the proposed myopic policy is
optimal for finite horizon. Clearly, it is also optimal for the
average cost of one period. To prove the policy is optimal
for infinite horizon, we have to show the average cost of
one period, or mathematically speaking, that the following
limit exists:
lim P2 l.:(s, i) =L (20)
P n
Since the corresponding model Markov chain is ergodic,
then the system will reach steady state and for every state
ol it, the limiting probability exists.

Let, (s, ) represent the limiting probability that the
system will be in the (s, i) state, if the proposed myopic
policy is adopted. Then the average shortage and holding

cost of each period will be,
L' = Y n(si) [(s,i) (21)
51

and since, by theorem (7) the average cost of any of the
myopic policy is less than any other policies and the limit
for that average exists, then this myopic policy is also

optimal for infinite horizon.
MULTIPLE SUPPLIERS

In the previous sections, we developed an ordering policy
from a single supplier with the random yield. Ir: this
section, we determine the strategic issue of how to select
a supplier among N possible ones.

In the case of a single supplier, for each state of the
system a separate decision is made. However, to compare
the expected long-term costs of the suppliers, one should
consider the average cost of all possible states. Therefore,
in this section we show how to calculate the expected

average cost for each supplier.
The Policy

If the lead time, yield rate and price of supplieri (i = 1,2,
. N),are T, p, and ¢;', respectively, then, from (5) and
(21), the average cost of each supplier per period is as
follows:
Total Average Cost of One Period
= %ui (22)

Calculation of The Average Cost, L;”

To calculate, the average shortage and holding cost of one
period, from (21), the limiting probabilities as well as the
optimal single-period cost of each state are needed.

* considering the discounts offered after establishing a long-term relation.
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To see how to calculate the limiting probabilities of an
ergodic Markov chain refer toReference [ 10] for example.
However, since in this model the transition probabilities of
successive periods cannot be determined easily, we define
a new Markov chain, in which the stages 0,1,2, ... are
represented by periods 0,T,2T, ... Therefore, ps, 57, we
mean the probability of transition from S to S~ within T
periods.

In this model, the number of states is not finite, How-
ever, we show that under the optiaml policy, with a very
high probability (close toone), the number of states that the
system visits is limited. With any desired probability, there
exists alower bound and an upper bound for the number of
on-hand inventory, denoted by § and s _Furthermore, since
thatupperbound is below (Td), we do not consider the non-
ordering states. Then, considering only the ordering states,
every state can be expressed by its first component of the
state vector, as discussed before. In order to manipulate the
expressions easily we apply the normal approximation,

rather than using the binomal distribution directly.

Lemma 3: Let 6 =W (5, I (s)) - W (s, I" (s)), then,
a: 0 = pI’ (5)- Td+s.

b: If Y,  isapproximated by a normal distribution, then,

*(s)
[ (k) Vgpi () < <0 (£ Vi () +1
k+h k+h

where, O(.} represents the probability of standard normal
distribution.

c: If k >h then, pI” > Td-s,

Proof: Part(a) can be obtained from (3) and (4). Applying
o) in (9) and (10) results in
part. (b). Ifk>h, then, k/ (k+h)> 5 and & (£)>0and part
(c) holds. ki

normal approximation for Y,

Definition 2: For a desired probability of o, we define a
lower bound and an upper bound for the number of on-

hand inventory as follows:

S=mac{se rPI()-Td2m Vgl (5)} (23)
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and

5=+ o Al ) (24)

where @ (m) = a,

Theorem 8: If ut the beginning of a period the number of
on-hand inventory is s, then after T periods, with
probability of a, the number of on-hand inveniory. say s .

has the following property

s =s, ifszs

2)s =5, ifs<s

Proof: By applying normal approximation for ¥, .y and
considering lemma 3, it can be shown that with probability
of & the lower bound of the number of on-hand inventory

of the next stage is

c ok
m- @ (k+ h)] Vi (s) |

Since I'(s) is a decreasing function of s, the lower bound of
the on-hand inventory of the next stage is an increasing
function of s. Therefore, for any s > s, this lower bound is
at least as high as s, by definition (2).

To prove part (2), we have to show P/ Y,,zTd] 2o

or

pl *(s) -Td >m
Vo’

This relation holds because of definition (2), and the fact
that the lefi-hand side of the above relation is monotoni-
cally increasing function of I'(s) and I'{s} is decreasing
function of s.

As theorem (8) shows if the system starts within the
range of {5, 5], then with the desired probability, it will stay

within that range in the next stage. Furthermore, if the
system starts from below S , then as part 2 of theorem ()

shows, it will move to that range gradvally.

Theorem 9: If at the beginning of a period the num-

ber of on-hand inventory is s> s , then the probability
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that after T periods the number of on-hand inventory
will be greater than Td is practically negligible. Pre-

cisely,

PLY[(s)2 2Td-s] < I-p [ T4 - pi=E—

(s) 1s1-0[ 7 cb(k+h)]
Proof: By applying the normal approximation for I(s) and
some algebraic manipulation, the above relation is ob-
tained. It can be shown that

52 -[m- !

k 2
(k+ h)] VqTd - mq

Similarly, for any s > s,
pl(s)<Td + mYqTd + mig

Now considering the above theorems, the state space
of the Markov chain with an acceptable truncation, is
limited. this Markov chain is obviously ergodic. then,
the average shortage and holding cost of each period
L”, is determined by the following linear programming

model:
minL" = sz,sn(s)[’ (s, )
subject to,

5
n(s)=Xm(s)p,. S<S<s§
§=5 ’ )

M e

n(s) =1 25)

=

4

w(s)=0 §<s5<s

where, ©t(s) is the limiting probability that the number of

on-hand inventory will be equal to s.
Summary of The Supplier Selection Procedure

1- Identify d, kand A. Select the desired probability (o), for
truncation of state space and determine m= (I)'l(oc) from
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the standard normal distribution table, (for example, o=
99, m=2.33.)
2- For each supplier take the following steps:

1- Identify ¢, T, and p,,

2- Determine 5. Set s = -[m-&" (K)VqTd. If (23)
holds then go to 2.3, otherwise se??z_s—l and repeat
this step.

3- Calculate s from (24). For each s< s< s, deter-
mine I'(s) from (9) and (10) or by normal ap-
proximations.

4-For each s< s< 5, determine L(s, I'(s)) from (1), (2)
and (3).

5- Solve the linear programming model of (25) and
determine L".

6- Calculate the expected average long-term cost of

(22).
3- Compare the costs and select the supplier.

Numerical Examples

Example 1: For a particular item, assume the demand
per period is 40, unit shortage and holding costs per
period are 120 and 10, respectively. For truncation
level, we set = 99, m= o' (.99)= 2.33.

There are two suppliers with the following specifi-

cation:

Supplier

number ¢ p, T
1 18 9 4
2 16 8 4

As can be seen the lead time as well as the price of
acceptable items, i.e. (¢/p,), for both suppliers are the
same. However, according to our procedure, the average
long-term shortage and holding cost per period for supplier
1and 2 are L; =79.8, and L= 111.2, respectively. In fact
the second supplier can be selected if he reduces his price
as low as 15.3 dollars. After selecting supplier 1, then the
ordering policy is as follows:
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s 4 3 2 -1 0 1 2
I'¢s) 189 188 187 186 185 184 183
I(sl’) 8048 8035 8027 8025 8027 8034 8046
s 3 4 5 6 7 8 9
sy 182 180 179 178 177 176 175
F(sI') 8062 7862 7851 7846 7845 7849 7858
s 10 11 12 13 14 15 16
r's) 174 173 172 170 169 168 167
I(sI') 7872 789 7913 7664 7661 1661 7668

Example 2: In example I, assume the lead time of the first

supplieris 7, butall other dataare the same. Therefore, the

first supplier is more reliable while the second one has

shorter lead time.

Following our procedure results in,
Li = 104.8, L;=1112.

The first supplier is selected, in spite of his fonger lead

time.

Example 3: For demand and cost of the first example,
assume there are three suppliers with the following speci-

fications:
supplier
number g P, T
1 18 9 7
17.1 .85 4
3 142 7 2

Thefirst supplier is the most reliable and the third one
has the shortest lead time, while the second one is some-
where in the middle.

The average long-term costs of these suppliers are as

follows:
supplier Li* Cidi Total
number D Cost "
1 1052 800 905.2
2 96.9 804.7 901.6
3 97.1 8114 908.5
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Therefore, the second supplier is selected.

The Effect of Different Parameters on the Policy and
the Cost

Theorem 10: The optimal quantity of in-transit inventory
I", is a non-increasing function of p.

Proof: The above theorem follows from the fact that
binomialrandom variablesare getting stochasticallylarger
as p increases.

To illustrate the above theorem, suppose p= 1. Therefore,
you order exactly as much as you need. In this case, no
holding or shortage costs occur, i.e., I(s, I')= 0. As p
decreases from one to some extent, then youhave to order
one unit more than you need to cover one possible defec-
tive item. As p continues to decrease, the order size will
increase. Figure 1 shows the optimal value of order size with

respect to p.

Ot

a+1 I

Figure 1. Optimal number of in-transit inventories vs. p
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Theorem 11: If for some inventory on hand, say s, the
optimal quaniity of in-transitinventory isI'(s), then I'(s) +
5 Is a noa-increasing tunction of s.

Proof: The above theorem follows from (9) and (10)
und the following property of binomial random vari-

ubles.
P(Y 2Td-s + 1)<P(Y >Td-s)
Luspact of Quality on the Optimal Cost

Although we did not prove it mathematically, it seems
trivial and our numerous numerical examples verify that
the optimal shortage and holding cost of a single period,
I’(s,i).1s a non-increasing function of p. For any fixed lead
tinue 7', the general shape of L™ as a function of p is shown
in Figure 2. Then as example 1 illustrates, if the lead times
and the expected real prices of acceptable items of two
suppliers are equal, i.c.,"—ll =”—§, the supplier with greater p,
{(better quality) will be selected. This means it is economi-
cal to pay higher prices for more reliability that results in
less shortage cost. The trade-off between the price and
reliability is determined by the proposed policy.

SUMMARY AND RESULTS
In this paper we consider two different  but related

problems. In the first part we develop an optimal ordering

policy for an inventory systein in which the supplier yield

Lu

—

e

1

Figure 2. Optimal total average cost per period vs. p
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israndom and some delivered items may be defective with
a certain probability and are independent of the others.
Assuming the value of an item is always equal to its
purchase price, the policy happens to be myopic. In the
second part of the paper, the strategic issue of the supplier
selection is addressed. A procedure is developed to choose
4 long-term single supplier among the possible alterna-

tives with different lead time, price and quality.
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