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Abstract A generalized simplified model for describing the dynamic behavior of distributed parameter
systems is proposed. The various specific characteristics of gain and phase angle of distributed parameter
systems are investigated from {requency response formulation and complex plane representation of the
proposed simplified model. The complex plane investigation renders some important inequality con-
straints regarding the transcendental charactenistics of phase angle. In this way 1t become possible to
classify the various possible phase angle characteristics of these systems. The proposed generalized
simplificd model is stmulated to some actual process systems for further confirmation of the simplifica-
tion capability of the model and the reuslts of simulation are discussed based on the conclusions of
dynamic behavior investigations.
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INTRODUCTION

Describing the dynamic behavior of systems by simple
rational transfer function models is a well-known practice
which has been developed and used frequently. Almost a
first or sccond-order rational transfer function or at most a
third-order one, which may include a time-delay clement,
seems to be sufficient for describing the dynamic behavior
of many process systems, especially those of lumped
parameter behavior.

Although in many cases low-order rational transfer

functions are sufficient for this purpose, due to the
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practical existence of more complex systems. such as
boilers, some methods have also been developed for
the simplification of such systems by higher-order
transfer functions [1,2,3].

The gencral high-order rational wansfer function

model for such cases is in the form
m n ’

F(s) =K. ] s-z)/T] (s-pi)- (h
i=1 i=1

In some distributed parameter process systems such as
heat exchangers, heat pipes, tubular reactors. packed tow-

ers ete., the behavior of the system is so complicated that
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the problem is more serious than ordinary "time-delay

included rational transfer functions” due to the appearance

of periodical resonances in theit frequency response which

may be accompanied by nonminimum phase behavior.

Concerning the step response and frequency response

of these systems the following special features may be

summarised [4,5,6]:

1) There may appear an abrupt change in the slope of

step response in some of these systems. Sometimes the

slope can switch signs, while in some cases this abrupt

change in slope does not appear.

2) Some of these systems exhibit large phase lags at

high frequencies, indicating nonminimum phase behavior.

The nonminimum phase behavior may or may not include

oscillations.

3) Some distributed parameter systems exhibit limited

oscillating phase angle behavior at high frequencies with-

4) Sometimes the minimum or nonminimum phase
behavior of the system switches sign ata certain fequency.

5) In the procedure of controller design for these
systems, the time-delay element in the model of the system
can not be recognized explicity from the model, while in
the existing methods for controller design of time-delay
included models, the minimum and nonminimum phase
parts of the model must be explicitly recognized.

Except for the last item, so far no unique answer or
expression to the above problems has been presented in the
literature in spite of the great confusion which arises in
using the dynamic models of these systems.

Tablz 1 includes asummation of various models which
are used or mentioned in the literature as suitable models

for describing dynamic behavior of distributed parameter

TABLE 1.A Summary of Different Models Adopted for Distributed Parameter Systems

T
Either proposed or used for output Number of | Applied for Reference
simulation or theoretica.lly- input pa_rame[ers process number
derived models: G(s)
1| Ke® , 1-K 4 heat (71
1+T;s 1+T3s pipe
Ki;e™is +K2. e . . heat 8]
2. emperature
1+T1s 1+T;s velocity 6 exchanger
P(s). ¢ -1
_— fluidized
Q) derived
3.1 P(s): Third-order model bed [4,5,6]
polynomial of "s" calciner
Q(s): Fifth-order
polynomial of "s"
4 Kda.e™ o 5 _ (9]
(1+T,s) (1+T;,s)
5.0 K(s).[1-e7™] temp. derived | steam-liquid [10]
velocity model heat exchg.
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process systems. In fact much more complicated models
also appear in the literature but these are not mentioned in
this table.

The unique feature of all of the above models in this
table is that they are parallel combinations of two rational
transfer functions, one of which includes a time-delay

element.
OBJECTIVES

Here as a generalized simplified model for describing the
dynamic behavior of distributed parameter systems the
transfer function model in Equation 2 is used for investi-

gating the specific characteristics of these systems.

G(s) = g,() + g,(s) (2)
where
g.()=K.e™/Q(s); g()=K,.e™/Q(s).

This model is an adapted form of all the models in Table
1. Indeed it is a generalized form of model number 2 in the
above table which has been used by the authors for
simulation to a heat exchanger frequency response data.

If necessary Q (s) and Q,(s) may be some urational
functions of "s", but for the purpose of simplification in
process systems they are aimost enough to be polynomials,
Q, (s)andQ_ (s), with the orders "m" and "n" respectively.
In most cases for the purpose of obtaining an applicable
simplified model, the polynomials Q_ (s) and Q,_ (s) are
enough to have a maximum degree of 2.

The objective here is to carry out investigations to
answer the first four essential questions related to the
unknown characteristics of distributed parameter systems.
This is done on the simplified model in Equation 2 since
the frequency response verification of the model has
revealed its good capability lo describe the above-men-
tioned transcendental characteristics of these systems.
Also in order to further confirm the ability of the model,

some more simulations are carried out here in addition to
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the existing results in the literature.

FREQUENCY RESPONSE FORMULATION

As astarting point for investigating the dynamic behavior
of the model, equations of gain and phase angle are
obtained for the general case where Q (s) and Q,(s) arc

some irrational or rational (polyruaial) functions of s,

|GG =V(Ra+Ro) "+ L+ 1) (3)
£G (jo) = tan* Laxtlo (4)
R.+Rs

R.I.R ,and 1 are real and imaginary parts of g (jo) and
g,(jo) respectively. This method of analysis may be used
for the general case where Q,(s) and Q,(s) are irrational
functions as well as the simpler cases where they are
polynomials of "s".

A sumpler yet more straightforward method 1s based on
complex plane representation shown in Figure 1. This is
also applicable to irrational Qa(s) and Q,(s) as well as
rational ones. In Figure 1 vectors a, b and ¢ are represen-
tatives of g (jo), g, (jw) and G(jo) respectively. They are
used here for simplification in writing the formulas and
they have the same subscripts as their respcciive function.
For example a together with o shows that Qﬂ(s) Is
irrational or ¢, | (numerical subscripts indicate the order of
polynomials Q (s) and Q, (s) respectively) isrepresentative
of G, (s),i.e,a=a,=g, (jo), o= a=~Lg, (ju),b=b =
g, (o). =P =Lg, (jo),c=¢, =G, o) andy=7, =
LG, (jo).

From the gains of vectors a and b as well as thesr angles
with real axis the gain and phase angle of ¢ canbe obtained.

3(jw) may be written as:
Gw)=KyeMie /(U +jVa) +Koe ™ /(Up+)Vh),  (5)

where U, U, V_and V_ are real and imaginary parts of
Q,(jw) and Q,(jw) respectively. Thus, gain and phase
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Figure 1. Complex plane representation of the simplified model
in terms of vector summation principle

angle of G(jw) will be obtained straightly from Equation

3 and Figure | as:

lel=1G o)l

- w42+|bf+ 2K, Ko ][] cos (B-09 (©)

[Kif[&e|
L= LG(jo)

) (Ky/|K1])|a] sin e+ (Ko/{Ka]) bl sin 7
=Ty D fafeosocr (KR Dbleosp ™ 1

where

IR - v

lal = Iga(jw)iz
U§ + V§

Ibl =g, (jw)= __|K—2|—; B=-or, - tan! (V JU)
Ul + Vi

8= P-o= aft,- 1) + tan* (V /U) - tan (V /U)).
In the above expressions the terms K AK Fand K /1K)
are added for providing a generalization in the equations

for the conditions where K and K, are negative values.
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Otherwise one must be careful to insert "-m+o” instead of
"o" when K <0 and "~ + B" instead of "B” when K <O in
equations of frequency response. Equations 6 and 7 de-
scribe the gain and phase angle of the model in a unified

manner for any form of Q (s) and Q,(s).
CHARACTERISTICS OF GAIN

Resonance characteristics of gain are explicitly recognized
from Equation 6. At low frequencies (where o approaches

ZETO) gain approaches
lel= 1K, + K (8)

By considering the maximum and minimum amount of
the cosine term in Equation 6, two upper and lower enve-

lopes of the gain may be expressed as:

E = max lal + Ibl
E = min [ lal -1bl1

upper envelope (9 a)

lower envelope 9 b)

At high frequencies, these envelopes of gain will ap-
proach two separate straight asymptotes in alog-log scale.
Mathematical expression of the asymptotes can be ob-
tained by ignoring the low-value terms of cquation of gain

at high frequencies. Fora G, (s) simplified modcl at high

frequencies
Icm.nl
7 7
= KW Ko ?‘Km'K3 cosfo(t - 1)l .
I TE ™ 0T " T,
(10)

Thus

m,n S 'cm,nl S Mm,n (1 1)
where

N = min||KL_- K2,|,| Ki_, X |
m,n I(le)m (TZCU)“| I(le)m (T260)n|
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|K1_K2||K|+K2|

M = max )
[T (T [T o)

m,n

In the above equations T, and T, are the parameters of
g (syand g (s), where the polynomials Q_ (s) and Q, (s)

am bn

are in the form

Q (9)=(Tsy*+c, (T )™+ ... +1 (12 a)

am

Q, &)= (T,9)" +c (Ts)"+ ... +1, (12 b)

bn

andc_.c,..andc_.c ... arethe constants of polynomi-
al® Ta b1* 7h

2 2

als. The vertical distance between the two asymptotes 1s

o = M.~ Nm'n. (13)
Figure 2 represents the envelopes of gain fora G (s)
model. The gain of model oscillates around the gain of the
"higher gain clement of the model”. This is the straight
implicit concept of Equation I 1. Another important factor
identified from this equation, is that the slope of asymp-
totes for a GI,I(S) model is -20dB/dec and for a Gn(s)
model it will be -40dB/dec.

CHARACTERISTICS OF PHASE ANGLE

With regard 1o the phase angle, although its specific
characteristics are very important, nothing can be under-
stood explicitly from Equation 7. Actually, this kind of
behavior which includes maximum and minimum points

has been observed for phase angle by plotting the Bode

d 0
ﬂ

2-20 F 9a1 T

-40 m

0.1 1.0 8.0

—_— W
Figure 2. Upper and lower envelopes of gainfora G, ((s) model
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diagram of the model for different amounts of the param-
cters of models G (s); m= 1,23 and n=1,23.
A discussion about this problem is possible by use of

complex plane representation of the model.

Complex Plane Investigation of the Characteristics of

Phase Angle

Figures 3 and 4 are prepared 1o show two importar .t cases
(or forms), [a] and [b], which can possibly occur or phase
angle of ¢ due to the rotation of constituent vectors a and
b. These scrial figures are drawn at certain arbitrary
frequencies such that the position of vectors can show the
originality of arising various conditions of phase angle of
model during the rotation of vectors. In both figures it is
supposed that the vector a1sin condition of phase lead with
respect o b; thatis vector ais slower inrotation than b. The
difference between the two cases [a] and [b] is only in the

lengths (gains) of vectors a and b.

Im Ya Im Y
9 9% G Re Re
T
o
v i9a
4 \
- v
LN\
gb - G
im We
>g 1
¥l 4
e o
>~ - Ya

Figure 3. Complex plane representation of vectors at some
discrete w for case [a], lab/ bl > 1.0

K =05 T=02 7=0.1
K,=0.3 T,=03 1= 1.6
Qs)=1+Ts Qs)=1+Tgs
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Figure 4. Complex plane representation of vectors at some
discrete  for case [b], lal/ bl < 1.0

K=03 T=02 1=0.1
K,=05 T,= 0.3 7= 1.6
QE)=1+Tpgs Qs)=1+Tgs

Close investigation of the above figures reveals that the
key pointof difference between themisat , where the two
vectors a and b are located in opposite direction with
respect to each other and the gain of model "lel” is in its
minimum amount. The figures infer that in case [a], Figure
6, with increasing o, vector ¢ oscillates around vector a
while in case [b], Figure 8, the oscillations are around
vector b.

In the sense of Bode diagram this means that the
maximum and minimum points of the phase angle of
model are located around the phase angle of g (s) in case
[a], and around the phase angle of g(s) in case [b].
Therefore, if it is supposed that g (s) is a minimum phase
transfer function (i.e., 7,=0) and g (s) is a nonminimum
phase transfer function, then the model G(s) will have a
minimum phase characteristic for the condition of case [a],
and nonminimum phase characteristic for the condition of

case [b]. Regarding the complicated characteristics of
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distributed parameter systems that are known to be able to
show minimum as well as nonminimum phase behavior
[4,5,6] the above conclusions are very important.

Some example frequency responses and vector dia-

b

Figure 5. Vector diagram of model for case [a]

K=0.5 T=02 7=0.1
K=03 T,=03 7,= 1.6
Q)=1+Tgs Q,5)=1+Tgs
— \/-\f
G
&]\ -20 —
T
z —-— —
<
o -0 - —
0 |
& a
(Y]
LY
w -60 G =
wn
<
I
o
-120 —
9b
0.1 1.0 W 8.0

Figure 6. Frequency response of model for case [a]

K= 0.5 T=02 7,=0.1
K,=03 T,=03 7,=16
Qs)=1+Ts Q(s)=1+Tgs
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grams are shown in Figures 5-8 for the two cases.

In addition to the above two cases another case, named
case [c], is recognizable. This case will be considered for
the special condition in whichlal=1bl. Frequency response

and vector diagrams of this case are shown in Figures9 and

Figure 7. Vector diagram of mode! for case [b]

K=03 T=02 1=0.1
K,=05 T,=03 =16
QE)=1+Ts Q()=1+Tgs
0
i% -201
z |
< . -
o &0
0 "ﬁ
. ~300%
e)
@ —
RS
0
< -600}
&
-
0. 1.0 8.0

—_— W

Figure 8. Frequency response of model for case [b]

K=03 T=02 7=0.1
K,=05 T,=03 =16
Qs)=1+Ts Qs)=1+Tgs
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10. As with case [a], in this case also vector ¢ oscillates
around a, but the length of vector ¢ becomes zero at @,. As
aresult, the phase angle becomes indefinite at the point of

minimum gain and a jump of +180 deg. appears at this

point.

0. 1.0 80

.——)h)

Figure 9. Frequency response of model for case [c]
K=04 T=02 =01
K=04 T,=02 =16
Qs)=1+Ts Qs)=1+Ts

Im

Figure 10, Vector diagram of model for case |¢]

K=04 T=02 7=0.1
K,=04 T=02 =16
QG)=1+Tgs Q6)=1+Tgs
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Inequality Constraints for the Appearance of Various

Characteristics of Phase Angle

According to the above discussions the following inequal-

ity constraints can be written for each of the cases:

case fal:

dlé_“_l/dmd and |_a_|_>1 ;0> 0> m, (14 a)
dlgbl/dw Ibl

case | bj:

dizalidy g pqlal ) 0> 0> 0 (14b)
diZbl/dw ibl

case |¢l:

dlzal/da)<l m]d!il_l_:l Dow > 0>, (14 ¢)
dizbl/dew Ibl

That is, the relative values of gains and derivatives of
phasc angles are the dominant parameters in the appear-
ance of various forms of phase angle. The reason for using
the derivative of phase angle is discussed below.

It 1s mmportant to note that the relative value of the
lengths of vectors a and b with respect to each other as well
asleading and lagging of these vectors may change with an
increase in @ duce to the effect of parameter in Q (s) and
Q,(s). Forexample, if at some specific @, a crossing of the
gains of g (jw) and g, (jw) appears, then the form of phase
angle afier o, will change from case [a] to [b] and vice
versa,

With regard o the phase angles of a and b, the change
of Ieading and lagging of vectors a and b implies that the
derivative of phasce angle, which is an indication of the
speed of rotation of the vector, should be applied in the
inequality constraints instead of the phase angle itself.
Because. if for example at the start of rotation, vector a is

in a condition of lcading with respect to b, then

l< al<lZ bl orall @ if J1£ al/ dw < dIZ bl/de lor all @,

That is, if the speed of rotation of vector a is less than that

72 - Vol. 6, Nos. 2 & 3, August 1993

of b atall frequencies then this vector ais in a condition of
leading with respect to b at all frequencies.
However, if with an increase of @, at some = o the

speed of rotation of a overpasses that of b, then
diLal/do<diZbl/do for 0<w,

and

dial/do>dlL b/ dw for w>a,.

Therefore, after @, the leading and lagging condition of
vectors will certainly become inverted and the form of
phase angle of model will change from case [a] to case [b)
or [b] to [a].

Moreover, the possibility of an appearance of some
new forms of phase angle of the model is prediclable.
These new forms are indeed some combination of the
original ones, [a] and [b]. They may be called [ab],, [ablp,
[ba] , and [ba] , where the subscript "g" shows that the
change in the form has occurred due to the effect of gain,
and the subscript "p" is representative of the effect of phase
angle. Still some more combinational forms are expected
toappear. Forexample, if the changes of the relative values
of gain and the derivative of phase angles appear both in
one period then the form of phase angle will not change
after that period due to the simultaneous occurrence of two
changes of conditions. The forms relating 10 such condi-
tions may be called [a]gp, [a]pg, [b]gp and [bl,,g- In Figures 11
and 12 two examples of frequency responses for the forms

[ab]g and [ba]g are shown.
STEP RESPONSE BEHAVIOR

The step response of a general simplificd model as the one

in Equation 2 is
Y=Y () + Y, (1), (15)

where Y (0 and Y (1) are responses of g (s) and g (s)

respectively. For example, for a G, ,(s) model
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Figure 11. An example of frequency response for condition of
change from case [a] to case [b] for model G, (s)

K=038 T=12 7,=0.1

K=03 T,= 0.4 =29

Qs)=1+Tps Qs)=1+Tygs

Y, 0=Y,0+Y, (0, (16)
where

Y (=K (1.0 Ty and Y, (0= K, (1- e €72/ T2),

The two elements Y (1) and Y (1) cach will begin to
effect the step response of the model just after passing a
time equal 1o the respective time-delay in that element.

Thus if it is supposed that 7, < 7,, then in total, three
scparate regions in step response of the model are identi-
fiable as:

1) From t= 0 to t= 7, in which no response will appear
from the model.

2) From 1= 7, up to t=7, in which only the step response
of g (s) 1s affected by input.

3) From =1, up to infinite in which both g (s) and g,(s)

contribute to the response of the model. In this region an
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Figure 12, An example of frequency response for condition of
change from case [b] to case faf for model G (%)

K=038 T=12 =29
K,=03 T=04 7,= 0.1
Q)=1+Ts Qu)=1+Tgs

additive action of g (s) and g (s) appears in response.

From the above discussion it can be concluded that the
actual time-delay of the model is 7, (the smailer time delay
parameter), whereas the other one cannot be considered as
the time delay of the modcl.

Figure 13 shows two examples for step response of a
G, ,(s) model. In this figure the positions ol parameters 7,
and 7, are very well recognizable. On the contrary, in
Figure 14, which is also drawn for a G| (s) model, the

position of 7, cannot be detected expliciily.

FITTING OF THE MODEL TO SOME DISTRIB-
UTED PARAMETER PROCESS SYSTEMS

The simulation of a model like G| (s) 0 frequency re-
sponse data of a counter-flow tubular one-pass heat ex-
changer has been reported in a previously-published paper
by the authors |8]. That simulation was performed using
the frequency response data that was obtained by Toudou

[11] from the original complicated model of the system.
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1.0
T
T
0.0 time
K =06 T = 0.658 7=0.1
K= 04 T,= 1.105 =16
(13-a)
1.0
AS
12
0.0 time
K =06 T = 0.658 7,=0.61
K=-0.4 T,= 1.105 =247
(13-b)

Figure 13. Two examples of step response of model G, (s)

In this work the results of simulations of the model to
two different process systems are presented. One is per-
formed on the complicated model of the parallei-counter
flow two-pass shell and tube-heat exchanger of Matsubuchi
[12,13]; the other is performed on the distributed param-
etermodel of a fluidized bed calciner which is presented by
Ramanathan [6]. Obviously, the distributed nature of heat
exchangers refers to the length of the apparatus, while in
the fluidized bed calciner the particle size distribution

inserts the distributing nature to the process.

Fitting to Parallel-Counter Flow Two-Pass Heat

Exchanger System

For the double-pass shell and tube heat exchanger the
simplificd model is sclected to be in the form of a G, (s)
transfer functon.

Figurc 15 shows the heat exchanger system. The

frequency response data used here are from the original

74 - Vol. 6, Nos. 2 & 3, August 1993

1.0

1

0.0 time

Figure 14. An example of step response of model G, (s).
Position of time-delay parameters are not detectable.

K,=0.6 T = 0.658 T=0.61
K,= 0.4 T,=55.0 T=247
11
INPUT— i ) —
1 Il E"
A

OUTPUT EIIIIIYIIIIIIIIIII :IIIIIIIIIIIT

| { =

' X Ax

[E L .

Figure 15. Two-pass shell and tube heat exchanger

transfer function of the system for tube output temperature
forced by shell input temperature.

The method of least squares in frequency domain was
used for fitting the model to the data of the system [1,2.3].
Steepest descent method of iteration was used for calcula-
tion of the parameters of the model.

Since the data are complex numbers, if A(®) is sup-
posed to be the real and B(w)) the imaginary components
of data at @, the problem of simulation can be expressed
as minimization of the summed-up amount of e(®)” in the

desired range of frequency
o=, to w fori=1.2, .., n. where
e(w)= [A() - R (w) + R (0))]
+[B(w) - I () + 1 (0)] (7
R (0), R (w), () and [ (@) are real and imaginary

components of g (jo,) and g (jw) at @,
For the general model G(s) in which Q_(s) and Q,(s)
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may be some irrational functions or polynomials of "s", by
substitution for real and imaginary components of g (jo)
and g (jw) tn (17), Equation 18 will be obtained as the
general form of the index of performance for simulating

the simplified model of Equation 2 in frequency domain.
e(w) = A(w) + B(w)

" K (K +2[B@) U, (w ) +A(w ) V. (w )] sin (0T}
Ua(@) + Vi(@)

2K A (@) U, (0)- Bw) V,(w)] cos @7T))
U, o) +V, (o)

K2 1Ko+ 2[B(e) Ub (@) + A () Vi ()] 8in (061))
Un(@) + Vi (@)

_2Ko [A(@) Un(w) - B(ay) Ve (@] cos (axT2)
Ub(@) + Vi (@)

+21(1 Ko [Ua (@) Un{an) + Vo (@) Vi(wp] cos [wi (11 - D))
[UZ (@) + Va (@)] [Up (@) + Vi ()]

_ 2K, Ko[Un(@ )V, (@) -U(w ;) V(@ )] sinfw (7) -7))]
[U2(@)) + Vi(@)] [Ub(@) + V(@)

(18)
Here, U (1), U (), V (1) and V (.) are real and tmaginary
components of Q (jw) and Q, (jo,) respectively. For this
problem since the model is a "2,2" order model then
U()=1-Tiex , V(0)=2 T,
2
Ufw)=1-Tiex , V,(0)=2( T,o.
Figure 16 represents the basic concept which is used

for obtaining the index of performance in frequency do-

main. That is, minimization of the lenght of vector AG(jm)
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which is the difference vector between the vectors of the
original model and the simplified model. Figure 17 shows
the results of simulation.

In this example, simulation was performed on the
range of @ from (.1 to 5.7 and in this range n= 57 points
were used (w=0.1.0.2, 0.3, ..., 9.9, 5.7). The amount of

calculated parameters are

K,=03172 T,=05062 { =0.6706
K,=02137 T,=02496 { =1.6912

T, =-0 3090
T,= 1.627%

The summation of the errors between the simplitied model
and the original data (calculated from Equation 2 for 57
points) is Epc = 0.032407.

Fitting of the Model to Fluidized-Bed Calciner System

The fluidized-bed calciner system which is used here for
simulation is the Dorr-Oliver fluo-solids lime-mud
reburning calciner [14].

Control of the particle-size distribution can be achieved
through measuring the cumulative mass fraction above a
cut point size. The dynamics of particle size distribution in
this system can be modeled using a population balance on
particles. The transfer function for the cumulative mass
fraction above a cut point size "Z" is presented by

Ramanathan [6] as:

_ [Pa() /P2 (0)] e*5-1

G (s) , Ll (19)
s(s+1]) (s2+3s+3)

p

where

P(s)=(s+1yYZ°+3(s + 1)’Z? + 6(s + NZ + 6
P(0)=2"+37+ 6Z + 6.

The cut point size 'Z" is cumulative mass fraction cut
point size which1s selected to be equal to 2 in this example.
The time and cumulative mass fraction "Z" are the param-
eters of this distributed parameters system.

The form of equation is not as complicated as liquid-
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Im G(jw) :Model

F(jw)=A+jB : Data

G(iw)/\ Aotjw)

F(jw)

—> Re

Figure 16. Minimization of the length of difference vector
between the vector of model and data can be used for simulating
the model to frequency response data of system.

simplification is done by fitting a G, ,(s) model on the step
response data of the original model. The results of simula-
tion are presented in Figure 18.

This system has negative gain with the final value
tending to -0.1403, The number of parameters to be calcu-
lated were reduced from seven to six by use of the concept
of K, + K = const. which is determined straightly from the
steady state region of step response data. The results of

calculations are

K =-10012 T,=5918 [ =4743 1 =0.620
K,=9.871 T, =55900 7,= 2.000

The summation of errors for 33 points of time .= 0.0,
(.25, 0.50. ..., 8.0 was E_ = 0.00007477. The frequency

response of both the simulated model and original one are
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=20 \

GAIN(dB)

MODEL ——
-0~ DATA ———

PHASE (deg.)
T

0.1 1.0 57
—> W

Figure 17. Result of simulation of G, ,(s) simplified model to
frequency response data of parallel-counter flow shell and tube
heat exchanger

shown in comparison with each other in Figure 19.

CONCLUSIONS AND DISCUSSIONS

Frequency response investigation of the proposed general
simplified model of Equation 2 confirms the capability of
the model for describing the transcendental dynamical
characteristics of a class of distributed parameter process
systems thatcan be described by hyperbolic form of partial
differential equations. In these systems, that frequently
appear in chemical process industries, the convective
transport dominates the dispersive phenomena [6]. The
important yet complicated specific characteristics of these
systems (especially in frequency domain) are detected
from the general formulations of frequency response and

complex plane representation of the model.
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MODEL ——
-0 —
DATA — —-—
_Q15 -0.1403]
| | | | | |
0 2 4 6 8
—_—

Figure 18. Result of the time domain simulation of the model to
the fluidized bed calciner

Concerning the characteristics of gain for a model

w8

1) Atany frequency "@'" the width of the resonances of
gain (that is, the distance between the upper and lower
envelopes of gain) is equal to two times the gain of “smaller
gain element” in the model. That is, the gain of "smaller
gain element” at each "@" fixes the difference between
upper and lower envelopes.

2) If the order of elements of model g _(s)and g, (s)are
cyual; say m=n=u, then on the log-log scale of gain the two
asymptoles are parallel lines with slopes equal to -20u dB/
dec.

3) The parameter 7,- 7,=7is the main effective variable
which specifics the regular periods of gain af sufficiently
high frequencies. Whilst at sufficiently high frequencics
the effects of phasc angles of the terms 1/Q (jow) and 1/
Q,(jo) are almost diminished.

Concerning the phase angle of the model:

1) The period of oscillation of phase angle is equal to
the period of gain.

2) Three basic forms (or cases [a], [b] and [c]), are
revealed from complex plane representation of the model,
and many other forms can possibly appear from the com-

bination of these three forms. Such forms will appear due
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Figure 19. Frequency response of the simulated simplified
model and the original model of the fluidized bed calciner

to the crossing of the gains and/or change of speed of
rotation of vectors of the individual elements of model
g.(s) and g (s), with respect to each other.

In the example of two-pass shell and tube heat cx-
changer the phase angle of the system is similar to the form
[ab]g while the example of fluidized bed calciner shows a
phase angle of the form [b] which is a nonminimum phase
system. On the other hand, the results of simulation of a
model Gu(s) to the counter-flow tubular heat exhanger
which was previously published by the authors [8], repre-
sents the form of phase angle in case [a]. At the same time,
it is notable that the model of a Mixed Suspension Mixed
Product Removal Crystallizer for the cumulative mass
transfer function with respect wo inlet concentration which
is introduced by Ramanathan [4] is an actual example for
the form [ba]g of phase angle.

In the above examples the order of the model was
selected by trial and error so that the best fitness could be
obtained with arelatively low order model. However, the
results of the simulations were excellent both in the {re-
quency domain and in the time domain.

In all three examples regardless of the employed type
of data (frequency domain or time domain) the number of
parameters that must be calculated can be reduced by one,
since K| + K = K= constant, can be predicted straightly
from the data. This means that a complete fitness of the

model at steady-state and/or in very low frequencies is
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exerted in the simulation procedures.

Moreover, the results of this work may be used in
controlling the distributed parameter systems. In this re-
spect, the conclusions regarding the characteristics of
phase angle seem to be of importance and are helpful as a

guideline for further studics.
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