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Abstract
mdependont and denticatly distributed random vartables, the amval process s stationary and has the proparty
ol orderhiness. and the queue discipline is arbitrary . For this queuing system we obtai the steady state second
moment ol the queue stze i terms of the stationary waiting tme distiibution of a similar quetmng systent 1

In this puper we consider a quening system i which the seivice tmes ol customers are

which the quene discrphine s fust-mne-first-out.
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INTRODUCTION

The purpose of this paper is to investigate the relationship
of the second moment of the queue size with the stationary
waiting time distribution. Under great generality, the
relation between the firstmoment of the queuce size and the
first moment of waiting time distribution can be obtained
trom e well-known Littte's formula {4.7,1 1] which states
that the expected number of customers in the queue is
cqual 10 the product of the arrival rate and expected
waiting time distribution. In other words, the steady state
first moment of the queue size 1s equal to the firstmoment
of the number of custormers who arrive during a time
interval D, a rndom variable distributed as the stationary
watiting time, Making the following assumptions:

1) arrivals join a single queue in front of one or more

service stations,
2y service times of custorners are independent and identi-

cally distributed (1.1.d.) random variables,
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3) the arrival process is stationary and has the property of
orderliness: that is, the probability that two or mnore
customers arrive in sufficiently small intervad of time s
negligible when compared with the probability of one
or no arrivals,

we will show in this paper that for any given dgueue

discipline, the steady second inoment of the queue size 15

equal to the second moment of the number of customers

who arrive during a time interval D, which is distributed as

the stationary waiting time in a queuing system which s

equivalent (o the above queuing system in every respect

except its discipline which is first-in-first-out (FIFO).
We will use the following notations:
A(D= the cumulative number of arrivals to time t,
E|A%(1}]= second moment of A(t).
d(v)=the cumulative number of departures trom the
queue to time €.
A= a constant. the arrival rate of customers,

N(t)= number of custmers wn the queoe al ume L
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m(l)= expected number of customers to arrive
in the interval (0,t) given that a customer
arrived at ime zero,
D= wailing time of an arbitrary customer in the
queue when the queue disciopline is FIFO,
H(.)=the stationary distribution of D, thatis, H(x)=
Pr{D<x}.

EFFECT OF QUEUE DISCIPLINE

Suppose we begin our observation of the system at time
1=0, chosen as a time when the queue is empty. Let
(0<T <T,<... be the ordered arrival times of customer and
()<u <u,<... be the ordered departure times of the custom-
ers from the queue. Clearly u =T . The ith customer may be
delayed a time period D, The period during which he is
waiting for other customers. Let S be his service time, 1.e.,
the period during which he actually receives service. We
will say he is in queue during his delay time, in scrvice
during his service time, and, in either case, in the system.
Thus, the term system will refer abstractly to the facility
and all customers being served or delayed. Now, let w, be
the waiting time of the ith customer in the system which is
simply the sum of his delay (his waiting time in the queue)

and his service time:

w =D +S.

With this notation, the ith customer leaves the queue at
time T, + D. and leaves the system at time T, + w,.

Itis convenient to represent the evolution of the system
by drawing graphs of the cumulative number of arrivals to
time, t, A(t), and the cumulative number of departures
from the queue to time t, d(t). These are both step functions
which increase by one at each time of T, and u,, respec-
tively, as shown in Figure 1. At any time t the number of
customers in the queue is the vertical distance between the
two curves, N(t)= A(t) - d(t).

If there is a queue of more than one customer, the order

in which customers enter service need not be the same as
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the order in which arrive. If the departure time of the kth
arriving customer from the queue is u ., then this customer

waits a time
D =un-T,

in the queue. For FIFO discipline. n_ = k and D,_is the
horizontal distance from the curve A(t) to d(t) at height
between k-1 and k. Clearly the waiting time distribution
depends on the order of service. Now if all customers are
identical (have exactly the same constant service ime) itis
reasonable to assume that the departure curve d(t) does not
depend upon the order in which the customers are served.
If the service times are i.1.d. random variables and d(1) is a
random function of t, we can interpret this to mean that the
stochastic properties of d(t) do not depend upon the order
of service. This is turn implies that the distribution of N(1)
does not depend upon the queuc discipline [ 12]. Therefore
to find the second moment of queue size for any queue
discipline, we need only find it for the case of FIFO
discipline.
Let
E[N%*(1)] =second moment of N(t) the number of custom-
ers in queue at time, t, and
E[A%(D)]=second moment of A(D} the number of
customers who arrive in 2 time interval D, a
random variable distributed as the stationary
waiting time distribution when the queue disci-
pline is FIFO.
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Figure 1. Cumulative number of customers
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In what follows, we will prove the following theorem:

Theorem: For any queuing system, if

(1) the arrival process is stationary and has the property of
orderliness

(1) service times of customers are independent and iden-
tically distributed random variables,

(i) for the case of FIFO discipline the waiting time of a
customer is independent of the tuture arrival process,

then, the steady state second moment of the queuc size for

any queue discipline is equal to the second moment of the

number of customers who arrive in a time interval D, a

random variable which is distributed as the stationary

waiting time for FIFO discipline. That is,
E[AY(D)] = E[N*(1)]. (h
E[A%(t}]

Let P (h) be the probability of i arrivals in an interval of
Iength h. Then the assumption that the probability of two
or more arrivals in a sufficiently small interval of time is
negligible when compared with probability of one (or no)
arrival, may be defined by the condition [5.12]

[-P (h) - P (h)= o(h) ash—190 (2)

For a stationary arrival process [5.10)]

im 1PAO__g
t—Q

a constant, or equivalently

and tor the orderliness of any stationary arrival process, (2)
implics that 6= A, where A is the arrival rate [S.10.12].

Divide the time axis arbitrary small intervals,

as in Figure 2, Let

Lt forall k > .
and
Co={i0<t, <th
It
A = number of customers who arrive in h |
then,
E[A]=El 2 A]
ey !
= 2 ElAL
€
From (2),
A=1lor() ash — 0. (hH
Thus,
E[A(D]=% P[A=1|= ¥ Ah=M. 4)
i€y ! =X :

which is true for any stationary arrival process [ 1,10.12].
To find the second moment of A(1) we can write

E[AY0)=EI( T A

ety

=E[ X A{]1+2) X EIAAL jkeC,
e !

ok

=3 E[Af]+2), D EIAA L
i€

I k>

Jke € (5)

From (3),ash — 0

I- P (0= B+ o(t) as -0, EIAfl= E[A |= P{A =1]= Ah,
lr‘lj hk
- o
R T e N O O Y
t:]t]"'l tktk"l

Figure. 2. Time axis divisions.
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and from (4)

E[A]= At. (6)

=y
Conditioning on A/ we can also write, as h — 0

EIAA = EIAJA= 1| P{A=1}
= E[AJA= 1] Ah. (7)

From (5). (6). and (7) we can write
EIAX)]=M+2), X EIAJA=11 b, jkeC, (8)
ik

By virtue of the additivity of mathematical expectation

we can wrile

2 EIAJA=Tl=m(1)  kjeC, )
k> '

where

m(l-ll)z expected number of arrivals in the interval (Hj)’
given that one arrived at t,

In view of (9) we can write (¥) as

E[ANYl=At+2 2 m(t-1) khj

Je(]

or equivalently
EIAXV)= A+ 20| m(txd
= 2h ] mex) d (10)
Y
Now, let
A(D)= number of arrivals in a time interval D, a random
variable with probability distribution function H(.).

Then, by conditioning on D, we have
E[AYD)|= E[E[AXD)ID] |

- [”" E[AX(D) ID= u] dH(u),

and from (10)

EIAD)I=| D+ 24 ] m(x)dx] dHw).

Rt 1o
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Integrating by part, we have
E[AX(D)]= AE(D) + 2A | miu) [1- Hauj du.
(kh
E[NY(D)]
Lt

N = number of customers who arrived n hlzmd are stilln

the queue at time .

and Crm)i-eo<t,, St}

Then, we can write

N@= 2, N.
je 2
and
EIN(D)I=E[ X, N|
je ¢
= 2. EIN|. (12)
je 2
Clearly,
N=Tor( as h — 0. (13)

Thus we can write

E[N |=Pr {N= 1}
=Pr {N= 1A= 1} Pr{AI= 1}
=Pr{NJ= LTA=1} lhi.

But, given a customer arrived in hJ then he will be in the

queue at time tif his waiting time D is greater than t-( . That

18,
PriN=11A= 1}=Pr{D>t-1}
= He(t-1),
where
He(t-t )= 1-H(t-1).
Thus,
EINj= A H(t() by (14)

and from (12)

EINWI=X Y, H(-)h

e (o
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or equivalently

E[N(1)]=A ;HC (t-s)ds= A ; H¢ (u)du
=AE[D]. (15

This is the well-known Little's Formula [4,7,11] which
holds for more general queueing systems than the one
considered here.

To find E[N()] we can write

EINYI=EI( Y, NpR=El Y, Nf+22 2 NNJ jke,

j€ 2 je €2 i k=
= Y EIN[I+2Y, D EINN]J jkeC, (16)
e C2 i k> !

From (13)

E[Nf}= Pr {Nj=1}

= Pr{NJ: 1}
= KH“(I-[J) hj, (17)
and
E[Nij]z E[N/| Nj=1] Pr{NJz 1}
=E[N| NJ=1] kH“‘(t—l)) h). (18)
But,

E[N, INJ: 1]=E[A] Nj= 1.
The reason 1s that NJ: I: that is a customer arrived in hj and
is still in the queue, implies that the customer who arrived
in h, must be in the quene at time t, sincet >t and the queue
discipline 1s FIFO.

Furthermore, we can write
ElAIN=1]= E[AJA=1]. (18a)
To see this, we note that N =1 implies a customer arrived
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inh, and his waiting time is greater than t-t.. But, for the
above queuing system with FIFO discipline the waiting
time of a customer in the queuc is independent of the
number of arrivals A _, who arrive after him. Thus we can

write
E[NkNj]= E[AkIAjz 11 KH“(M;) hJ. (19)

Substituting (17) and (19) in (16) we have

E(NY(D]= D, XHC(tAlj)h’+22 2 E[AJA =1 AH (-1 )1
e U i k>
J ke,
=AY, H(e1)+24 Y, He(tt) b 2 EIAJA=1].
je C2 je C2 : k>

. keC,

From (9) we can write

EIN'(]=A Y, Hett)h+ 24 2, H(t) m-y)h,

e Ca je Ca

or equivalently
E[N(D)]= x[ He(t-u)du + zxj “m(i-u) He(-w) du,

or

E[N(1)]= A [:‘Hc(u)du w2 " m(u) He(u) du

ER 10

~ AEID] + 24| m(u Hw du.  20)
In view of (11) we can write (20) as
EIN*()}= E[A%(D)],
which proves the stated theorem.
Remarks

(i) Since service times of customers are 1d. random

variables, the distribution of queue size does notdepend on
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the queuce discipline. Thus, if we denote the queuc size for
FIFO and non-FIFO gueue discipline, respectively, by N

and N then Equation 20 staes that

E[NZ = EINfl= EIN*U]= AEID] + A | m(u) H(uj du.
Y

{20
(it) Furthcrmore, let
tH ()= distribution of waiting tme in queue for non-HEO

discipline.

Since the distbutton of waiting depends on the gueue
disciphne 1121, Equation 20 does not hold it we replace
H(.y by H () in Equation 20. This point can also be seen
from the fact that Equation 18adoes not hold forany gueue

disciphine other than FIFO.

For Potsson arrival process at rade A we have muj=Au

Thus tor Poisson arrival we can write (20) as:

E|INY1)j= AE[D] +2A ")ﬂku He(u) du
=AE[D] + A° |r“ 2uH(u) du
= AE|D| + A* E(D?) (22)

Let o= standard deviation of N(1). and o = standard
deviation of D, then from the fact that E [NX0)]= o5
4+ (B[N E|D= 0%+ (E[D])*. and EIN()|= AE[ D] we

can write (22) as
o3= AEID] + Moz, (23)

An obvious application of 20 (or equally of Equation 1) 1s
that the knowledge about the distribution of waiting time
determines the variance of the queue size, a quantity that
is of interest in the analysis and designing of queuing
systems. Consider the application of "L=AW" (L= E[N],
W= E[D]) where the knowledge about either L or W lcads
to the knowledge about the other quantity. As in the

application of "L=AW".in the case of queues with Poisson
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arrivalg, the knowledge about cither o or o (23) also
4

leads to the knowledge about the other quantity.

Examples

In the following examples et

P_=the steady state probability that ncustomers are in the
system.

(a) (M/H2/1) modei

Consider @ single-channel gueuing svstem e which the
arrival process is Poisson with rate L and the serviee tnes
have the following hyper-exponentiad distribution func-

tion:
g(x)=dGe)/dx= (14) Ac ™+ (3 Qe xz0. (245
The moments of this distribution are:

E[S|= l/u=5/(8%). E(S?|=7/(8 ). and E[S*]=33/(16A").

(25)
From (25) and Pollaczek-Khintchine tormula [ 2 we have
E[D]=7/(6A) and E[Nj=7/6 (26)

In general, for M/G/1 model 2] we have

E[D?|= [M(1-p)] (EIS*IEID] + (E|S*I/3)}. (p= M),
(27

From (25) and (26), and the fact that p= /8. we can wrile
(27) as

E[D?)= 803 {(49/48X07) + (11/161) )= 41/9A2 (2%)

Applying (20) to this queuing system we have (from (22)

for Poisson arrivals)
E[N?= A E|D] + A* E[D?|
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and from (26) and (28) we can write
EiN‘j= 103/1%, (24

To see that this s i fac the value ol the second morment
of the queue size for this quesing systein, we tustnole that

{or this queuing sysiem (See [6] p. 196)

P 33232151+ 19132 21
Thus

FIN' = 3 (K 1P s

-

which issiowrn o be Bie vune s (295 as was the intention

(b) (G/M/1) model

Consider a single-channed gueunyg system m which the
limes between suecessive armivals have an arbitrary disuri-
bution G and the service times are exponentially distrib-

uted with rate @, For this queuing sysiem 9]
PriDeute Hu)= et b
where

B= | ewdGou). (30

Thus.

El D]:{ ) He(u) du= B/u(1-B), and E[N = AE[ D= p3/(1-B).

0

(i
Lt
s=u(1-i3). (32)
Then, we can write
He(uy= e, uzl), (33)
and
B=G(s) (34)

where G'(s) 1s the Laplace-Sueltjes transform (LST) of
G 2] That s,

G(s)=1 ¢ dGy)
MG
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Now, applying Equation 20 w0 this queuing system we
have
EIN‘= A EIDI 4 24 | m(u He(w) du
=AE|D] +2A 1( mu) fe™ du
= A E[D] + 2A B m(s), (35

where m(s) s the Laplace transform (LT) of the renewal

function m(ty, that is,

mis)=: { ¢ miy dt

But, the relation between mis) and the LST ol mi(t), in*(s),
s | 12]
M(S)= m’(s)/s
Furthernore, the relation between m'(s) and G*(s) 1s 18]
m'(sy= G'(s)/ [ 1-G"(s)]

Thus, we can write (35) as

E(NS= AE[D]+ 2AB { G'6)/ [1-G™(s)1} (1/s). s= p(1-B).
(36)

From (31), (32), and (34) we can write (36) as

EN=PP 2 1 ,I:P(l"'ﬁ;ﬁ' )
B (1-py KB (1-p)

To see that this is in fact true, we note that for this queuing

system (9]

l')k: I“’ (l“ﬁ) |5k7]‘ kZl’ (p - ;\’/U)

P=1p.

Thus we can wrile

Enel= Y (K 1y PUHB
. (-’

which is shown o bethe same as (37), as was the intention.
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