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Abstract We investigate the hard nonresonant excitation of the forced Duffing equation with a positive
damping parameter £ Using the symbolic manipulation system MACSYMA | a computer algebra sysiem, we
derive the two term perturbation expansion by the method of multiple time scales. The resulting approxmate
solution 1s valid for small values of the coefficient €. As the damping parameter € increases, the accuracy of
this solution degrades. Inorder to obtain an improved approximate solution to the given time dependent initial
value problem, a hybrid perturbation-Galerkin method is applied to the perturbation solution. The hybrid
methodis based on Galerkin’s method tor determining an approximate sotution to aditferential equation using
the perturbation solutions as trial functions. This hybrid method has the potential of overcoming some of the
drawbacks of the perturbation method and the Galerkin method when they are applied separately, while
combining some of the good features of both. We compare these two solutions for various values of € and ()
(the frequency of the external force) and demonstrate the effectiveness of the hybrid method. Both the
perturhation and hybrid solutions are also compared to a fourth vrder Runge- Kutta solution of the Dutfing
equation. For small values of €, the hybrid solution 1s very close to the numerical solution for most values of
Q) while the perturbation solution shightly overestimates the numenical solution. For larger values of ¢, the
perturbation solution deviates from the numerical solution very rapidly while the hybrid method remains close
to the numerical madel.
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INTRODUCTION variety of differential cquation type problems ({113 140
ISLT10], [11], and [13]). In constructing the peviurbation

Perturbation solutions have been used successtully in a solution, the usefulness at computer algebri s ystems v
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heen realized and demonstrated by many investugators
(see.e.gs. [21and 16]). The complexity of the perturbation
solution increases as more terms are required. Although
computer algebra systems alleviate some of the complica-
ttons. It s stifl impractical to computer the higher order
pertubation terms beyond a level. Unfortunately, in some
applications , a large number of pertubation terms are
required in order (o obtain a reasonable approximation to
the problem’s solution. In such cases, one should uy to
nake as much use as possibie of information contained in
the few lower order terms. The hybrid pertubration Galerkin
method (which we will describe below) appears to in-
crease the power and usefulness of the pertubration solu-
tion to a given problem {21, [71, [8].

The hybrid pertubation-Galerkin method is a two step
technigue, based on Galerkin's method for determining an
approxinrate solution to a ditferential equation. In step one

of the miethod, a formal perturbation solution of the prob-

fem L(u, ¢) =0 1is constructed, say of the form

N-

u= Y ehu+0 (V) which is formally valid as € — 0. In
k=()

step two of the method, a improved approximate solution

NI

uissoughtin the formu = 2 ’1;( u,. The new “amplitudes”
k=0

arc obtained by requiring that L(u, £) is orthogonal to each

of the coordinate function u, ie.

J L(E,E)uj(t)dt:(), j=0,1,..,N-1. (D

Equation 1 is a system of N equations for the N unknown
coefficients {4 ).
In this paper, we study the hard nonresonant excitation

of the forced Duffing equations

ii + 2epit + W + €0 = F sin 21,
u=0undit=0 when =0, (2)

In this equation i and i are the first and second derivatives
withrespect to time, £, the parameters 4, @, &, F,and Qare
wreated as fixed constants, while £> 0 1s a positive damping

parameter, We first develop a pertubation solution to the
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initial value problem (2) using the method of multiple time
scales. The resulting solution is valid tor small values of
the perturbation parameter €. As £ increases, the accaracy
of the perturbation solution will degrade. In order o
improve this solution, we will apply the hybrid perturba-

tion-Galerk method just outlined.
HARD NORESONANT EXCITATION
For this case we assume F =0(1) in Equation 2 and use the

multiple ime scales method [ 11 10 construct 4 two term

perturbation expansion of u(tj. We first define

Iy=t and T =¢1 (3)
and let
Wy =u (T, L) =u (L 1)+ eu, (T, 1)+ O0) 4
Then

d-9 ;¢9 4 O (&),
di dny A

2 5 v
d—:-()—--+2£

: +0(g2 (5)
dié Iy diy dl )

Using (3) - (5), Equation 2 becomes

(DF+2ED0D |+ ) 4 +2EH Dy +ED +..) U+ it + €03
=F sin (¢ (0)
where Dj.:-i. Substituting (4) for u gives

j
DEuo+EDGUL +2EDD Uy + 2ELDH0 + (BUo + g1 + EQuy,
+0 () =F sn QT (7)

Equating the coefficients of £ and &' respectively results

in the following equations
Diuo+ aBun=F sin QT (8)
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DU+ apuy = =200 Do - 2400 - erug )
From (8) the solution u is given by
w=C(TMcostaTi+D T+ _dn QT (10)

0=

whore C and @ are functions of T, and will be determined
by requiring the elimination of the secular terms in higher
order terms. Substituting (10) for u  into (9), we obtain the

following differential equation for u, .

Dt + min =20, (% +HC) SN (T + D)
[

S - a ) cos(a, Ty + D)
(/71 R

+ 20 ((:)0

S3oF QF+CH sin QT - 4uQ F cos T,

+20F * sin 30T - 3 CF $nQTicos (@, To + 9)
+60CF? cos2¢ X cos(woTo + D)

“C COS(3(a T+ D)) (1n

where
F

w?- O

ol
Il
2 —

To eliminate the secular terms, we set the coefficients of

sin(gp Ty + ) and cos(aTo + @) equal to zero, i. e,

20, (4C 4 1 C )=0 (12)
dT
and 5
2C (0,9Q 30F -3 aC?H=0 (13)
dT 8

From (12) we find
C=Cetn (14)

where C may be treated as a constant.
Substituting (14) into (13) and solving the differential

equation for @, we have

O=-_30_ %2l 4 3CFT 4 @ (15)
1640, Wo

Substituting for C and ® and using T, = rand T, = &, the

one term approximation u, from (10) can be expressed as

Journal of Engineering, Islamic Republic of iran

pa Y e e )T
1= CoHI00S ((f - 30 (Fp2emy 3EQ T2 D)
164w, 0,

+2F §ing) (16)

and the first derivative i is

uo=-Co ™ (ap+ ‘—3—5—'-@({'("7‘7‘“4 3£ Gin (1
8w, .

2

S SRR T 28U’f(+(b) 1-,“(1 Hcos (o1
16,um, .

ST SYel e LT Tl 30 Fr+(D)+2F().w\£21 (17)
16w, W

Applying the initial condition u (0) = 0 to (16) will resuit
in
o=30C_ (18)
b

Thisrelation exprcsses&)in terms of C. Similarly, we apply
the initial condition i, (0) = 0 to (17) and obtain

e Rl 3eQ iy

W, C+2F Q=0 (19)
Cl)) Sw‘)

which is a cubic equation and has three solutions for C.

The one term approximation for u can now be written
as
u=Ceiginf @t + 3% C?(1 - 21

1)[.‘(0/)
2
+3ea _ S+ —L _snQi+0(e) (20)
40 (2 o)’ w?-Q

with (N, the solution of (19).

After elimination of secular terms, the differential
equation (11) for u, becomes
Diuy + @y =-30F(2F >+ C sin QT - 4pQF cos QT
+20F  sin 307 30 CHF sn Qlicos (2(w,Th + )

~ .3
+60aCFcos 20T cos (w, Ty + D) - Q4Q_ cos BT+ D))

(21)

Using the symbolic manipulation system MACSYMA,

the particular and homogeneous solutions for u, are given
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by

W3 y
v L 0CT o (BanTh + B)) +3-0C” L
2 (wo+ L {3+t

32w}

2 F
(@o- ) Bwo-)

"'2

sin (2@ T+ ®)+ QT ) - % aC

dn Q(aTo+®)- QT ) -3 oC—L—
4 Qwo+)

72
Q(wo-L2)

—~

cos (aTo+ P +2L2T0) +% oC

sin 3T
(@} -9€P)

sin T - 4u£2———cosS'zTo
(@B +C2)
(22)

cos(aTo+P-2QTy) + 20

~

3aQFt+C?)

(@3-C0)
and
uin=C sin @To+Cy cos wTo (23)

where C, and C, are constants and will be determined by

applying the initial conditions. The total solution for u, is

U=+, (24)

Substituting for C, @, and @ from (14), (15), and (18)

and then using To=rand T, = &, u, can be expressed as

uy=-

32
23 o 2o 1 sin [2(at + 3aC? (1 - g2ty
2 (. +82) Bwo+LY) 16uw,

05626'25‘”; sin [2( ol
2 (wo-£2) Bw,-L2) k

“)a 2 2+ +3

?(ZC (1- gurp:H_?EaFt) Qi - ’;anE#!F
l6ua1) 0 4 Q(w,+€)

- _
gin [wor+-30C~ (1 - g 20my + ZEXF ) +201]
16,4ax) o

+3 oCle E“’F“qmla) (+ 30 C” 30.C? (1- ezm)_,_%ap {
4 Q(w,-£) 16w,

~

-3 ~ ~
o) +20F " n 3y -3 QF 4+ Cle 2oy L
(@2- D)

(@R - 9¢2)

sin LY - 4/’6“ cos C + C) sin oyt + C2€0S ant 25)

(- €0
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-3 pty) ~
1 oC” g [3(apr+3XC_(1 - o 21) + JELF )]
¥ 160ay @

Differentiating u, withrespectto ¢, an expression for i,

is obtained. Then, we apply the initial conditions u,(0) =0
and 1,:0) = 0 to the resulting expressions for i, and i, and
suive for the undetermined constants C, and €. From (25)

we obtain

~

Cr=4uLQ (206)
(- &)
and from u (0) =0 we have
C1=—1~u1p(0)= 3 aC (o +%£‘O{f 38()662\
Wo 32 CU Wo WO
+_3_ GEZF (?‘a){) +6E (I;Ez + %6 (XEﬁ +£2)

2 o +£2) G, +£) Wo 4w,

3 aZ’ZZ“
a)l) 4 ( [)()

2 wo(wo- Q) Bwo-LY)

3ol (y, s3eaf’  3eaC” o)
4 0,82 (@ +€Y) Wo 8wo
3 OCEFZ (o +”‘S£0(F 386!62_29)
4 w,Q(a,-€2) Wo 8w,
) L -
60QF 300 +2F)—L—  (@27)
W (R~ 982 W (W3- €P)

Substituting the expressions for C, and C, into (25) will

result in the total solution for u,.
The two term approximation for u is

u=uo+eu+0(EH= Z‘e‘gﬂ“sin[,a),w._ig—z‘z(l )
164w,

Jdea_Fr 34 F gnoy
40, (@3- XY aB-CF

+€&(Cy sin @y +C2cos opt+ up) + O (€7 (28)
where u, is given in (25).

THE HYBRID PERTUBRATION-GALERKIN
METHOD

In general terms, given the differential equation
L(u,e)=0 (29)
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where ¢ is a small parameter, the perturbation solution to
(29) can be expressed (in the case of a regular expansion)

as N

"= z ehup + O eN) 30

k=0
The hybrid Galerkin method is a two-step analysis
technique [6, 7]. The first step involves the computation of
the perturbation solution in form of (30) for a particular
problem of type (29). The perturbation functions u, in (30)
are determined from a series of equations obtained by
substituting (30) into (29) and setting the coefficients of £*
equal tozero, for k=0, 1, ..., N - [. In the second step, new
amplitudes of the perturbation coordinate functions u, are
computed by using Galerkin method. Thus, an improved

approximate solution @ for u is sought in the form

N-1
U= Aur+0(EM) (31

k=0

<z

it
LY

where the N unknown parameters ),k = kk (&) represent the
amplitudes of the coordinate functions u,. To determine
these parameters, we substitute u into the given differen-
tial equation (29) and require that the residual is orthogonal

to each perturbation coordinate function, i. ¢.
T
J L& udi=0 for j=0,1,.. ,N-1. (32)
0

Equation 32 represents a set of N simultaneous equations
for the N unknown amplitudes ).U, /11, s AN»I’
The differential equation (29) for the forced Duffing

equation (2) can be written as

L(u, &) = it + 260t + a¥u + eoae® - F sin Qr=0). (33)

For a one term perturbation solution u,, a hybrid

solution 1t = A, u, is obtained from (31). Substituting i into

(32) will result in the following equation;

T
f [Aoito + 2&totio + af Aoto + €0 g - F sin €21] uo de=0
! (34)
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This equation can be rewritten as the following cubic

equation for A,

T T
Ad [ 0 ugdl + /’L)J [oito + 2&uoito + @But) dr
0 0
T
-j Fugsin Qtdi=0 (35)
0

Using an integration by parts, we have

f uoilodt=uollo]g - [ (ito) dt (36)
0 0

Substitution of (36) into (35) eliminates the need to com-

pute u and hence (35) becomes

T

A [ eowddr+ Ao {uaiol§ +J [- (l'lo)2 + 2 €U0
0

0

T

+fud)dr ) [ F uosin Qudr=0 (37)
0

For a two term perturbation solution u=u +€u , a
hybrid solution 7 = Z.Ouo + Alul obtained from (31). Substi-
tuting # into (32) will result in the following equations for
A, andA,.

T T
Ao I [uoiio + 2€Lmioito + 0@ud di+ /103[ eouy
0 0
T T
+ A { [1oid1 + 2 €U0t + a¥uou; |di + /113 f eouou ﬁdz
S0 0

T T

eoay dt +3A0A° ] eoayu, dt
0

32 [

0

T
—,' Fupsin Qtde=0) (38)
J
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T

.
o . _ 3 -
Ao { (1 1ido + 2&/ito + aBuou1  di+ A [ Eozuoju 1t
b}

0

T T
.. . 3
+M[ {id) +2EL01111) + aBu,de+ A f eou
Jo 0

T ~T

2
eomu*di+ 30 ’ eomiou, dt

0 0

+3A°A J

-J Fupsin Qrde=0 (39)
0

The i, terms can be eliminated by the identity

T T
f u; it =lliﬂj]5-l u; jdt 40
0 0
and hence Equations 38 and 39 can be expressed as:

3 3 2
(}I=a1&)+0211+a3/10 +a4/l1 ~l—a5/1O l]
2
+aAA +a,=0, 41)
3 3 2
G,=b A +bA +b A +h A +bA A
2
+b AA +b,=0, (42)

where ¢, a,.,..., a, are given by

T

a1 =uoito]6 + I [-( 1'40)2 + 2Etluoio + a)?uO?] dt,
0

T

az =ur>iu]§+J [ - (ott) + 2 Loty + aBuou 1 dr.
0

T T
[13:J 800404111, U4=f Eml()u]3dl,
0 0
T T
_ vy 3 _ 2.2
as—ﬁj £omy e, aa—B[ oaiy U dt,
(} 0
T
(17:~1[ F uosin Qrdr (43)
0

and b, b, ..., b, are given by

20 - Vol. 6, No. 1, Febriiary 1992

T

b= uu‘m]6+[ [ - (o) + 201000 + @Puaiy ) di.
0

T

. .0 .
bz=u1ul]§+[ [-(1)” + 26t + @bu,dr,
0

T T
by= [ eoimdt . ba= J eom, "t ,
1] 0
T T
_ 2.2 _ 3
b5——3{ fomy U dte b6-3[ Eomou,"dt
0 ¢

T
[)7=-I Fuysin Qudr. (44)
0

The two nonlinear Equations 41 and 42 must be solved
numerically for the unknowns 4, and A,. To accomplish
this, we use Newton’s method. This iterative procedure is

carried according to the relation

ANV RO TR G R (45)

o]

S0 (A ). . . ..
where A = ,&0 is the approximation at iteration I,
/
1

Gy

a@):(
G:

_)
) is a vector of nonlinear functions, and J (A) is

Jacobian matrix of G defined as

(G 9G1
X 1
A oA
with
@=a1+3a32§+2a5%/11 +a621125
o
%: a+ 3(14.3.]2 +USA/% + Zaﬁﬂnlla
1

?;C_?z= b+ 30333 + 2521 + beds

]

%= ba+ 3[)42,12 + bs;{nz +2hgAoA.
]
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Ao
For the first iteration we use X(w ( = . Then
Iy £

S>0+1) o) .
-A |<édwheredisa

Equation 45 is
predetennined small number, e.g. 10-°.

RESULTS FOR THE HARD NONRESONANT
PROBLEM

The hybrid perturbation - Galerkin method has been ap-
plied 1o the one and two term perturbation solutions as
described previously. In this section we discuss the two
term soltution, In order to study the eftects of eand L2 on the

solution to the forced Duffing equation (2), we have set the

o

—— Numencal
—--- Perturbation
- Hybnd

t/n

Figure 1. L2 =05, £=0.02

S —
2

. ——Numericai
-~ Perturbation
Hylrd

0 2 3 6 IS 10
i

Figure 2. () =05, =01
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tollowing parameters to predetermined constants as

F=1o=1wm=1 p=02 1=10n (47)
while varying the parameters € and €. We have also
applied the fourth-order Runge-Kutta method with a step
size of /50 to (2) and compared the perturbation and
hybrid solutions to this numerical solution.

To obtain the nonresonant excitation only, the value of
€2 must be away from @, = 1.0 (primary resonance). We
have computed the perturbation, hybrid perturbaiion-
Galerkin, and numerical solutions to the differenuat equa-
tion (2) for many different values of L2 and €. in Figure |

through Figure 4 the two ~term perturbation and the 1wo -

20
i "

- ;Y o\

13 AR [
[ Fo .
pod I R
| ‘\ HE / \\

) ! i 1

10 P o ;o
i

|
! \ \ i
i | \ AN i !
\\ ! ! | i // - ! !
5 \ I i ! [ ! |
\ { i vy | i
! \ i
vl i 1 / !
[ \ i i
Vo ! ! \ ]
N “/ \ ! \ |
§ " \ i
| '
[ \ ’r
15 v — Nume-ical vy
v P N v
v o -—-Penuruation \ g
v Hybrid v
22— — —_— ——
O 2 4 6 A 10
t/n
Figure 3. Q=07,¢=1
14 —— .
i)
R
i ; n
/‘ \ 'l \
; \ \
5 FA [ I
ol ; 1 ! bl
;o I ! ,
! [ [ 4
10 [ o [ [
{ 1 ! 1 ! ! I ‘\
;- i i ! | ! | I
B I h x ! i 4 i i ‘ \
| ' 1 ! ! | / \
Lo /L\ ! L \
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20 - - - Perturbation
Hybnd
-25
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Vi

Figure4. Q=12 £=05
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term hybrid solutions are compared with the numerical
solution for some selected cases using the values in [47].
The first two figures illustrate the solutions for Q=0.5and
£=0.02, 0.10. For small values of & both the perturbation
and hybrid solutions are very close to the numerical
solution, As £ increases, we observe that the perturbation
solution diverges from the numerical solution and the
hybrid method results in a better approximation to the
solution of (2).

As 82 approaches o, = 1.0 (0.5 < & < L), we
observe that the amplitude and shape of the perturba-
tion solution deviates very rapidly from the numerical
solution for increasing €. For these cases, the hybrid
solution improves the perturbation solution signifi-
cantly. This is illustrated in Figure 3. When € in-
creases above the primary resonance, the hybrid solu-
tion again provides a much better approximation to the
solution of the differential equation (2) than the per-
turbation solution, Figure 4 is a representative of these
cases. For values of > 2.0 while € remains small (up
o £ = 0.5) the perturbation and hybrid solutions are
almost the same as the numerical sofution. As € in-
creases, the hybrid method does not apear to improve
the perturbation solution.

Table 1 contains the hybrid coefficicnts A and A for
the hard nonresonant case for some selected values of £2

and .

CONCLUSIONS

We have compuated the perturbation and hybrid perturba-
tion-Galerkin solutions for the forced Duffing equation
and have demonstrated that in general the hybrid method
improves the perturbation solution. For values of €2 larger
than m =1.5 (above the primary resonance), itappears that
the perturbation solution by itself is very close to the
numerical solution and hence it is difficult to observe the
improvements contributed by the hybrid method. The
usefulness of the hybrid method is best demonstrated for

values of € near the resonance (0.5 <2< 1.0and 1.0 <€)

22 - Vol. 6, No. 1, February 1993

TABLE |

Q € X, A
0.5 0.02 [EOERES 0.0037
0.5 0.05 10321 0.0492
.5 0.10 0.9974 0.0622
0.5 0.20 (LR86VO 0.0323
0.5 0.30 0.7992 0.023%
0.5 0.40 0.77965 1.0444
0.5 0,50 0.7230 0.0140
(.5 1.00 0.5951] -0.007 4
0.7 .20 (.U944 0.0520
0.7 0.50 0.5771 0.0037
0.7 075 (1.5108 a0017
0.7 1.00 0.4506 0.0007
0.8 0.10 1.3017 0.0383
0.8 0.20 0.9279 00227
0.8 0.50 04815 4.003%0
0.8 1.00 0.3647 0.0004
0.9 0.05 1.3925 0.0074
0.9 0.10 09094 0,0044
09 0.50 (.2532 S0.0002
0.9 1.00 0.1762 -0.0002
1.2 0.02 -1.0939 L0328
1.2 0.10 -1.3011 00146
1.2 0.20 -1.3039 0.0340
1.2 0.50 -0.8566 0,0120
1.2 0.75 -.6998 0.0066
1.2 1.00 -0.6095 .0040
2.0 0.02 1.0009 0.0195
2.0 0.05 1.0016 0.0495
2.0 0.10 1.0029 01018
2.0 0.20 1.0048 0.2144
2.0 0.50 0.9971 0.5781
2.0 0.75 0.974% ().8839
2.0 1.00 (0.94G2 1.179%

< 1.5).

We also note that this paper represents one ol the
first applications of the hybrid method to time depen-
dent problems (sec¢ [12]), since previous applications
have been largely restricted to boundary value prob-
lems ([2], 17]. [8]). We feel that the method (or some
suitably modified version of it) will be useful for time
dependent problems in even broader application areas
(e.g. partal differential equations). We are curently
investigating some particular applications involving
partial differential equations with encouraging tnitial

results.
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