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Abstract  This paper deals with the finite element solution of the convection diffusion equation in one and two
dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on
Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents
Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It is shown that specially devised

exponential elements can be very effective in finite element analysis of convection dominated phenomena.
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INTRODUCTION

The numerical solution of second order partial
differential equations (arising in Convection
Diffusion problems) whose first derivatives have
large coefficients has long been known to
present difficulties. The conventional way of
overcoming the parasitic oscillations that result
when finite differences or standard finite
clement methods are used, is to use upwinding
techniques [1]. Traditional upwinding techniques
tended to reduce the spurious oscillations but
usually made the solution method first order
accurate rather than second order accurate. An
optimal scheme for upwinding in the finite
element context was devised by Christie er al.[2].
This was achieved by adopting an essentially
Petrov-Galerkin approach. in this method, in
contrast to the standard Bubnov-Galerkin
methods the weak variational (weighted residual
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functional) equivalent of convective diffusion
equation is based on a group of weigh functions
which are different from the used interpolation
functions. Other approaches included adding
artificial diffusivity to the second order term in
the convection diffusion equation which was to
have the effect of cancelling the negative
diffusivity automatically generated by the finite
element discretization. This can be interpreted as
defining an upstream quadrature point. In one
dimension all these approaches could be made
nodally exact by adjusting the scheme to the
correct amount of required numerical dissipation.
When applied to two (or three) dimensional
problems these techniques produced excessive
crosswind diffusion. Hughes and Brooks
overcame this problem to a large extent by
“stream-lining" the artificial diffusivity term [3]
or as they later presented it by stream-lining
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their modified weighting functions [4]. This
stream-lined Petrov-Galerkin approach used
discontinuous weighting functions and was
applied quite successfully to a range of
problems. In the present analysis we look at the
basic convection diffusion equation in one and
We outline the weighted
residual finite element method in one dimension
and present our approach which is essentially a
Galerkin weighted residual technique based on
exponential interpolation functions. This is

two dimensions.

compared with the modern polynomial based
Petrov-Galerkin stream-lined upwind procedure.
Then for a two-dimensional test problem, where
an analytical solution is possible, we present our
numerical solutions and evaluate their accuracy
by comparison with the exact result. We aim to
show that by adopting exponential functions, that
is by tailoring the interpolation model to the
problems rather than relying on simple
polynomial functions for all eventualities, the
finite element solution of convection diffusion
equation can be significantly improved.

STATEMENT OF THE PROBLEM AND
THE FINITE ELEMENT SOLUTION

We consider the differential equation:

d’¢(x) d¢(1)

dx?

X Ra)——=5(x)indomain x, <Q<x, (1)
subject to essential boundary conditions. In order
to develop a weighted residual finite element
solution for equation (1) the domain Q is
discretized into a mesh of finite element. Within
every elements. (Q,) a weak variational form of
equation (1) is derived by integrating the
functional which results from replacing ¢ {(x) by
a trial function ¢! (x) and weighting the
generated residual:

f (x){ ¢ i-su)}dn,=o @)

a,

where w(x) is a weignt function and

¢. = ‘_Ji N; ¢, (3)
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N; is the interpolation function associated with
node i; m is the number of nodes per element
and ¢; represents the nodal value of ¢. In the
standard Bubnov-Galerkin method the weigh
function is taken to be identical to the
interpolation function (W; = N; for i= j).
Integrating by parts equation (2) gives: (note that
in one-dimensional case d€), is simply dx).

dw d¢ f ¢
w ——d
dx dxdx X. X
&
-f ws.dx+wd—°i~| =0 (4)
4, dx q,

Thus by analogy to matrix forms, with
summation over the repeated index i, the basic
weighted residual finite element form of the
original convection diffusion equation becomes:

an,
[f dx dx KN, dx
dIN
+{ s Nax {¢,}={~, in'q"é} (5)
0'

L,j=1,..,.m

Using an isoparametric mapping of the form
x=3 NE)X, (6)
im]

equation 5 is cast in a local natural co-
ordinate system for a master element defined
between € =-1 and ¥ =+1 and the integrals in its
left hand side are evaluated by Gaussian
guadrature. This process is repeated for every
element and finally all of the resulting elemental
equations are assembled together [5]. The
flux term in the right hand side of equation (5)
vanishes for all inter-element boundaries and
appears only on the exterior boundaries of the
solution domain. Application of the boundary
conditions renders the assembled global set of
equations determinate and soluble. However, if
the coefficient of the first order derivative (K)
in equation (1) is large (convection dominated
case) and the selected interpolation functions (N;)
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arc polynomials (or for the multi-dimensional
situations are the tensor products of polynomials)
the solution of the obtained global set will yicld
oscillatory and uscless result. In particular if
linear interpolation functions are used the
described Bubnov-Galerkin scheme will produce
an oscillatory solution which is identical to the
one obtained by a finite difference technique
based on central diffcrences. In the finite
difference context the traditional way of
overcoming this has been the use of less accurate
forward (or backward) difference for the first
order dcrivative term [6].

Upwinding

The stream-lined upwind Petrov-Galerkin
modification of the described finite element
procedures presented by Brooks and Hughes [4]
i1s based on using a wcighting function which is
given by:

oN
Kh 2] (8 o

W) =NE)+ [CO&h 2 KRl %

" Kh
where h is the element length. They have
shown that using this weighting a nodally exact
solution for the original equation can be
obtained. Such a rigorous analysis is not possible
for two or three dimensional problems and an
analogous form for weight functions in two
dimensions is given by:

aN,(&.n) Kd aN.(E.n)

8
% o

W, En=NEm+Kd.

where d is an upwinding constant which is a
function of the so called nominal element length.
The stream-lining concept arises from the idea
of trying to define the upwinding constant d in a
way which eliminates spurious diffusion in the
crosswind direction [7].

Exponential Interpolation Functions

A differential equation of the form similar to
equation (1) will have a solution consisting of
two components-the particular integral and the
complementary function (corresponding to the
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solution when S=0). The exponential
interpolation functions are really designed to
model the complementary function. In one
dimension we discretize the solution domain into

a mesh of binodal elements of length A,. In

b
terms of & (i.e the variable along the
corresponding master clement) we define the

following interpolation functions:

Kh(E+1)2
N e G -1
+1 Kh
e -1
&)
Kh Khy(E+1)2
e f.__e §
e "—1

Firstly we note that these functions have
correct local support i.e.:

N,+)=1 and N, (-=o

(10)
and N_,(+)=o

N =1
Secondly they are square integrable (L)
functions satisfying the necessary continuity,
differentiability and smoothness, required for the
finite element solution of equation (1) (8] If
we transform from our master clement back to
the global system we could write these
interpolation functions as:

&
e’ -1
N+l_ F ¢
-1 o<x < h (11)
N _en—-eh
LS|

It is easy then to sce that these interpolation
functions satisfy the homogencous form of the
equation (1) exactly if K is constant.

STABILITY ANALYSIS FOR EXPONENTIAL
INTERPOLATION FUNCTIONS

Starting from the homogeneous form of cquation
(5) we construct a set of elemental equations
based on cxponential interpolation functions and
isoparametric mapping. All of the required
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integrals in this case are evaluated analytically.
In order to simulate a realistic two point
boundary value¢ problem we have to at least
assemble two of the elemental equations.
Combing two clemental equations at their

common nodce we obtain:
¢.,(12-)+¢,200)0 +¢_(-12~-a)=0 (12)

$.;» ¢, and ¢ _, are the nodal values of @ at
three successive nodes and

1
|

a=12.%
4

13

Equation 12 represents a difference equation
which using the shift operator E gives:
(12-)E", + 200, + (-12~E" ¢,=0  (14)
thus
(12-a)E*+20E - 12 -a=0 (15)

with solutions

a+1n

E=l . B4,

Therefore by supcrimposition after
substituting for o from equation (13);

¢,=A+Be"™ (16)

where A and B are constants. Clearly there
is no chance of oscillations and equation (16) is
the exact solution.

TWO DIMENSIONAL TEST PROBLEM

We consider the two dimensional convective
diffusion equation represented by:

Fo(r.y)  Fé(x,y)

o = MLY) e Y (9
x y

ax ' ay

_Kl

in (wo dimensional smooth domain Q with a
closed boundary I'. Unlike the one dimensional
problems it is not very easy to invent a range of
two dimensional problems whose analytical
solutions can be readily derived. However, if we
assume that the domain Q is a square with the
essential boundary conditions specificd as is
shown in Figure 1 we can obtain an analytical
solution for equation (17) (for the case when K,
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1 B
For:
y=00,0gx<1,46=10
x=00,0gy<1,¢=10
x=10,0<yg1,6=00
y=10,0<xg1,¢=00
- —H-
0 1and:

¢(1,0)=05,6(0,1)=0.5
Figure 1. Boundary conditious for two-dimensional
preblem.

and K, are constants) by the separation of
variables.

This solution is given by:
'!J‘.f

2

= 8nme

’(I,)V)-- Z ’ ) -JZ:

2

-1 1-
L )e S w{\l— ( y)]
JL-Clre VA,(1-x)
K,+4 z‘":sz(nﬂ:y)Sum[ ) 18)
where
A =K}'+K2+an’r>o0 (19)

In order to formulate a finit¢ eclement
solution for equation (17) using exponential
interpolation funactions we construct a set of
tensor product clements based on the one
dimensional example. For a four noded master
element we have:

M. M) =NE,)) . Nmn,)
Mz(g N = N(E_m) . N(Tl-n) (20)
M. ) =NGE,) N
M, )=NE ) .Nn,)

where N (¢ ;) and N (¥, ) are given in equation
(9). Replacing h, and ¥ whit h, and nin
equation (9) we get N(n_) and N(n_,). For
Bubnov-Galerkin formulations we use
exponential weight functions which are
For
Petrov-Galerkin (Upwind) formulations we use
modified weight functions given either by:

identical to interpolation functions.
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S K} thxlhg 2 oM,
= i (4] — —_
TR\ 2 KR ) O
K3 Kby 2 oM,
+ th - -— 21
K,‘+K§(CO 2 Kk, )om @D

(we refer to this scheme as exponential upwind
scheme A); or by:

Kha oM, Kh, M,

W =M+ -+ =
' 2K+ k296 2KkP+k2Om

(we refer to this scheme as exponential upwind
scheme B).

(22)

NUMERICAL EXPERIMENTS: RESULTS
AND DISCUSSION

In order to establish the validity and
applicability of exponential interpolation
functions an extensive set of numerical
experiments has been carried out. The most
important results are presented in this paper.

One Dimensional Problems

[} Bubnov -~ Galerkin formulations of
equation (1).

1) Constant K with no source term. As
expected the exponential functions give nodally
exact solution for all value of K up to £40. This
is based on a six point Gaussian integration of

18

1

! .
¢ - :
_1-8_ X exact solution ]
—14F 4 exponential interpolation functions |3
—18F ($scale x 1072) .
-22C
—26C D linear interpolation functions
_30: n
G L | i SIS SIS B S R Y S S S R RO B S

0 19 30 45 60 75 90

X1072
Figure 2. Results of numerical experiments Jor:
K=40.05=00

the functions in the working equation. The
departure from the exact solution for |K| above
40 is due to the inability of the integration
scheme to cope with the exponential functions
sufficiently accurately. The linear functions in
general give inaccurate results for small K
values and exhibit oscillatory behavior for large
K (Figure 2).

2) Constant K with a source term. We look at
relatively large K values with the constant or
variable source terms. Exponential functions give
much more accurate results in comparison with
linear functions (Figure 3).

3) Variable K with or without a source term.
Results for various cases are presented in Figure
4. They are in agreement with the general

e

_4_
¢ -8r
-12c
= 6: X exact solution N
—2(QF 0 exponential interpolation
~-24 [ functions
“28:'D liner interpolation functions
-32hn
—365 + exact solution
“Afo_ V exponential interpolation functions
—44: 0 linear interpolation functions
"48‘;111111111111111111
O 20 40 60 80
X1072

Figure 3. Results of numerical experiments for: I: K = 30.0,s = 30.0 II: K = 30.0,s =-2.0 + 600 X
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conclusion which points to the superior accuracy
of the exponcntial functions.

II) Petrov-Galerkin (upwind) formulations of
equation (1).

1) Constant K with no source term. In all
cases (even at K >>40) upwinded solution give
nodally exact results.

2) Constant K with source terms. The same
upwinded weight function is used to multiply the
source term. Accuratc results are obtained using
both types of interpolation functions.

3) Variable K with or without source terms.
Both techniques produce accurate results.

Two-Dimensional Problems

Solution of the one-dimensional equation reveals
that for larger values of K we need to use a
higher order Gaussian quadrature in order to
maintain the accuracy of the schemes based on
exponential functions. This is computationally
expensive. However, in the 2-D test problem K,
or K, (cocfficicnts of the first order derivatives)

=7

75 x 10

llllTl]lT!l’llT‘l‘l

1 2? x 10

are constants and it is possible to evaluate the
integrals in the eclemental stiffness equation
analytically. This is used to derive the working
equation of the present solution scheme. We
consider the results for various values of K, and
K,.

1) K, =K, 2.5 to 10. In this case the
convection terms are comparatively small.
Results for a 7 x 7 finite element mesh (Figure
5) for various cases are given in Figure 6.
Bubnov-Galerkin schemes give acceptable results
although for K, = K, = 10 those solutions which
are based on linear interpolation function start to
oscillate. Upwinded schemes in general produce
overdamped solutions. The degree of overdamp
is slight for consistant Pctrol-Galerkin based on
exponential functions and sever for biquadratic

functions.

0
Figure 5. Finite elements mesh .

"5 lo A4t e 411131384

-2
O 20 40 60 80 x 10

I) K = -30.0/(1+x),5=0.0
A exact solution
* exponential interpclation
functions
0 linear interpolation
functions

II) K = 2/x, S=1.5x
+ exact solution
V exponential interpolation

4 exact solution

V bi-linear interpolation
functions

+ bi-quadratic
interpolation functions
(upwinded)

* exponential interpolation
functions

x exponential interpolatiomn
functions {upwinded,
scheme A)

0 exponential interpolation
functions (upwinded,
scheme B)

functions
O linear interpolaticn
functions C
Figure 4. Results of numerical 0]

experimeuts for variable K,
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4 8 X 10-1

Figure 6. Solution along OP.
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2) K, = K, =40 to 160. The exact solution
tends to be 1.0 for all interior nodes. The
Bubnov-Galerkin formulations based on bilinear
and biquadratic functions produce oscillatory and
useless solutions. Upwinded Petrov-Galerkin
schemes based on polynomial functions produce
overdamped solution. Upwinded Petrov-Galerkin
schemes A and B based on exponential functions
produce accurate results with slight oscillations.
The Bubnov-Galerkin scheme based on
exponential functions produce the best result.
These are shown in Figure 7.

3) Higher values of K, and K,. As K and K,
increase (i.e. the convection terms become more
dominant) the upwinded schemes (based on
polynomial or exponential functions) become less
effective. In fact they tend to produce very

25 x 10

20

4 exact solution

V bi-linear interpolation
functions

+ bi-quadratic
interpolation functions

x bi-quadratic
interpolation functioms
(upwinded)

* exponential
interpolation functions

O exponential
interpolation functions
(upwinded, scheme A)

0 exponential
interpolation functions
{(upwinded, scheme B)

Figure 7. Solution along OP,
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nearly the same nodal values irrespective of K,
and K, values. In contrast the Bubnov-Galerkin
scheme based on exponential functions produces
more and more accurate results as K, and K,
increase. With K = 90000 these results are
accurate to 6 places of decimals.

CONCLUSION

The results for the onc dimensional case show
the expected oscillations for Bubnov-Galerkin
solutions of the convection dominated phenomena
when the scheme is based on linear or quadratic
interpolation function. In contrast very accurate
results are obtained if expdnential interpolation
functions are used. In gencral stream-lined
upwind Petrov-Galerkin schemes also produce
accurate results for one dimensional problems. In
two dimensions the value of exponential
functions becomes apparent in considering the
solution of the convection diffusion equation
where first order derivative terms are very large.
Our study shows that Bubnov-Galerkin schemes
based on exponential functions offer a very
effective method to cope with convection
dominated problems in two dimensions. We are
now extending this approach to tackle convection
dominated problems with an abrupt
(discontinuous) upstream boundary condition. It
seems that a combination of polynomials of low
degree with exponential functions will produce
the appropriate interpolation function to model
such a complicated problem.
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