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Abstract A robust state feedback design subject to placement of the closed loop eigenvalues in a prescribed
region of unit circle is presented. Quantitative measures of robustness and disturbance rejection are investigated. A
stochastic optimization algorithm is used to effect trade-off between the free design parameters and to accomplish
all the design criteria. A numerical example is given to illustrate the usefulness of the developed approach.
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INTRODUCTION

In designing feedback control systems one is
mainly concerned with the transient response and
its robustness. The transient requirements usually
appear as paramelric inequality constraints [1,2].
If the open loop system is completely
controllable, then there exists a state feedback
gain that places the closed loop poles arbitrarily
in the left half plane. In the case of simple
output feedback, controllability and observability
are not sufficient for the existence of arbitrary
eignevalue placement [2]. In the class of dynamic
compensation, like the Luenberger observer and
the dynamic output feedback controller, it is
known that if the open loop system is completely
controllable and observable, then the closed loop
poles can be located arbitrarily by the proper
choice of the gain matrices of an augmented
system (3,41

General analytical constraints on the
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“characteristic polynomial coefficients to solve the

stabilization problem have a rich history and are
well documented [5,6] Of particular significance
is the set of critical constraints ensuring that
eigenvalues remain in a specified region of the
complex plane, given allowable perturbations in
the system parameters [7].

Theoretical development of discrete time
systems has historically lagged similar advances
as in the continuous case. Therefore, traditionally
attempts have been made to extend the
continuous system tools to discrete systems [10,11L

In this paper astate feedback design technique
is presented for discrete time systems. The design
procedure is based on the assignment of the
closed loop eigenvalues in a defined region
of unit circle. The control design is robust with
respect 10 system parameter perturbation and
provides for disturbance rejection. The Lyapunov
method is employed to express the varicus
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‘control objectives related to the time domain
performances. A useful quantitative approach to
incorporate robustness and disturbances rejection
is developed. A stochastic optimization algorithm
is used for the selection of feasible control law
from the available information. With minor
modifications, the result presented here can be
extended to continuous case.

'PROBLEM FORMULATION

In this section, the selection of parametrized
families of state feedback gains for eigenvalue
clustering is considered. Several interesting
properties of eigenvectors and Vandermonde
matrices are useful here. The major task in
achieving spectrum assignment is to derive a
procedure establishing a closed-form link
between the feedback gain K and the nth order
open-loop characteristic polynomial coefficients.
Consider a linear system described by

x(k+1) =Ax(k) + Bu(k) (1a)
u(k) =Kx(k) (1b)

where x()eR", u()ER', and A, B, K are
constant matrices with compatible dimension. A
well known method [8] for determination of state
feedback in terms of desired complex
eigenvalues, requires satisfying a set of
independent linear equations, with attendant
redundancy in multi-input problems,

'K coli[Adiln— Al B=e}, (2)

where colj indicates the jth column, Ag; is ith
desired cigenvalues, ¢ is jth column of the unit
matrix Ir ,[Adil=—A)~ is the resolvant matrix.

Te analyze the resclvant matrix, apply the
Cayley-Hamilton Theorem,

] n . ]
(2= A)Y'= 3 gi(2) A, )
=1
where g{z)'s: are the unique solutions of;

Te=a1] e
{(z—A2)" C_yr £,(2)

(2= An)" 8,(2)
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‘and ¥ denotes the Vandermonde matrix.

1
Al A2 A
V=] : : :
-1 -l n-
Al A2 An

Let
Q=diag(A), i=1,-,n,

“then we have

7 (z—AD™ 1
(Z“‘?\))_] =(ZI—Q)‘] 1
(Z —}\n)" 1
‘Therefore,
8,
- || =vr |80
1 2,(2)

“Premultiply by the inverse Vandermonde matrix,

1 8,(2)
vy iar-or | =vr (B @
1 £,(2)
oy 0
0
[e,@ 1

8@ _ vy zr—qyvmy | ©

0
7 1
=Gr—a7 1| ° )
1]
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‘where Aco is the companion matrix obtained
from Q, that is

0 0 0
0 0 1 0
Aco= -, : :
0 0 0 1
—a4n —dan-1 —Aa4n-2 —4al
Since
_]_ zn71+alzn~2+...+an_i
(el—AT 0 __ z"_'2+ajz"-3’+'--+an—2
co .
0 1

Substituting (5) into (3), we have

) LA .
(ZI_A)_lB=E(Z—) ; (Z”“+al zn-i-

oo in) A B. (6)

‘Finally, define the open-loop characteristic
polynomial as,
- n

- - zn-1 -
A@)=[l.a;, .an n

‘and the desired closed-loop characteristic
polynomial as,

o
~ _ znvl -
Ad(z)=[l,ad1, .adn] . 8)

1
~Assume that
_A(Adi)#o,
“and
Ad(Adi)=0,

‘resulting in

1 n n-i -

i‘;(ai-adi)i\:_ =_§)at?\d ,a0=1, )
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‘where Ad represents the desired eigenvalues

{Adi, Ad2,...,Adn). By substitution of (6),and (9} into
(2

’ non-i il )
KCOII'[‘,Z](AJ +a; A, 4+ +an-)A1B]

n-k
(ak —adk)Ad ej.
1

™=

If all the desired Asi are distinct, it will
always be possible 1o find n linearly independent
columns from

i

T on om-i n-i-l .
[EI(A" +a,A; + +an-i)A'B)

‘where Ad € (Adl, Ad2,..,Adn). Then matrix K can

be found. When repeated poles are desired, a
modification is used to find » linearly
independent columns [8].

'ROBUSTNESS AND NOISE REJECTION

In this section, we will discuss the performance

characteristics due to plant parameter
perturbations and input noise. Consider a system
discribed by

x(k+1)=Acix(k), x(0)=x,,

“where Ac is an asympitotically stable matrix.

An important fact is that if Ac is
asymptotically stable, then P is a unique solution
to the Lyapunov matrix equation [9],

P=Al P A0, (12)

‘and P=PT>0, for any given O= Q" >0, where

‘>" denotes that square matrix is positive
definite. Suppose that A is changed to 4,484,
and P is changed to P+ &P, because of the
parameter perturbations, then a similar
Lyaponov matrix equation is formed as follows,

P+8P=(A,+8AY (P+8P)(A,+5A)+0.

Define a performance measure as

J=xq P x5. %470, (14)

'A quantified measure of the degradation in
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‘the performance caused by parameter
perturbation in A, is given as follows,

J@y J (B‘)

p—max[l(eo) 7 21}, (15)

“where 69 represents the nominal plant parameter

vector, 9' represents the perturbed plant

parameter vector. and
J(@)=x7(P+8P)xo “16)
‘Rewrite (12) as

P=(A,+8AY P(A,+8A)+Q,
—8ATPA,—A] PSA—BATPSA.

“Subtracting (17) from (13), we have

SP=(A,+8AY &P (A, +8A) (18)
+8ATPA,+ Al PSA+8AT PSA,

“(17) multiplied by (p—1), then minus (18) yields
(p— NP—8P=[A,+8A]"(p—1)P—38P]IA,+5A]
+(P=1D0—p(BATPA,+ A PSA
+8ATPSA), (
“Therefore, if

(O—1)Q—p(SATP A+ A PSA+8ATPSA)0, (20)

“then (p—1)P—8P>0 is the unique solution to (19),
which is similar to the result of the continuous

time system.
Theorem:
If
© 4;,) ©=V0 s yrrg1ymaa, 1)
“then

(p—1)Q—p(SAY PA+A] PSA+(SAY PSA),
“where

T=P(A,+8A/2).

“Proof:
let

T=P(A+8A/D),
“then we have

(= 1)@—p((BAY P A+ A} PEA+(SAY PSA)
=(p—1Q—p(BAYT+T75A). (22)
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Let Q}” be the positive symmetric square root

of Q,=(p—1)Q/p, then it is easy to verify that

fas \/— Q2 — V3 (aA)'TQ;"”)(% 0" (3
=IO TT84)0,

“and then

Qi 2—((BAY T+TT8A)+ 2SAYTQ; TT5A>0,

“ie.

Q) —((BATT+T78A)Q,/2—2BAY TQ; T76A.

‘Therefore, if {21) holds, we have

Q/2—2BAYTQ) T840,

“So that

—((BAYT+T78APO0.

‘Recalling T=P(A,+85A/2), we have

(0 DO—p((BAY PA,+A] PSA+(SAY PSA)O.

The theorem provides a condition to ensure
that (20) holds in terms of a generalized norm of

SA.

p can be casily used as an index to the
performance degradation due to parameter
perturbation. While 8P is primarily a function of
the worst possible uncertain plant parameter
vector. when the
parameters change, the noise rejection property
of the system is also affected. In order to
develop a measurement of noise rejection,

As we know, however,

consider a system driven by white noise, ie.

x(k+1)=Ax(k)+ Bo(k), (24)

where w(k) is a sequence of mutually

uncorrelated zero—mean with a constant variance
matrix W, ie. white noise. x(0) has mean m,,
and variance matrix §,. The variance matrix of
x(k) is defined as

S(k)=E(Ix(k)—m{k)I[x(k)— m(k)T"),
‘and mean m(k) is defined as

m(k)=E(x(k)).
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It can be proved that S=lim,_.S(k) is the
unique solution of the Lyapunov equation

S=A,SAI+BWBT. “(25)

Thus, a measurement of noise rejection can
be defined as

g TS HES)) (S +S8Y)
o=me sy T 06D

8§ is a variation of S caused by
parameter perturbation. A useful matrix
indicator corresponding to (20} is

21}, (26)

where

V=(0—=1)BWBT—G(5AS A+ A, SEAT
+8AS8AT)0,

The free design parameters in the
eigensystem assignment can be chosen such that
the system has a better performance as well as a
noise rejection property.

'An Optimization Approach

‘Let free design parameiers be denoted by a
vector f € FcRP, where F is a set of feasible
values for f. We can assume that

F=[ot, By1X[06, B1X:  X[otp, Byl

“where o;and B; are finite. The purpose is to find
a sct of free parameters such that both p and
o approach 1.

Define a function

&=w\p+wyo, (28

“where w>0, w0, and w,+w,=1(71
A stochastic optimization algorithm is used to

minimize function g with f € F. The procedure is
given as follows,

1) Select initial values for f, denote by f©.

2) Select an initial range r; for f,i=1,...p, denoted
by r@,

3) Set the iteration index /=1.

4) Take m sets of p random numbers
between -0.5 to 0.5, denoted by Z,, g=1,...m, and
for each set Z, calculate

fi=f0-D4 Z % p0-0,

5 If f® <o, then fP=o if 9 > B, then

" Journal of Engineering, Islamic Republic of Iran

=

6) For each set, evaluate p and 0. Calculate
function g.

7) Choose the parameter f which gives the
maximum g and denote this as f.

8) If g( ) satisfies the termination condition,
then stop. Otherwise I=I+1.

9) Reduce the range by

_ rit=(1—g)ré-n

‘where 0<€E<],

10) Go to step 4 and continue for a predetermined
number of iterations,

‘Numerical Example

"Consider a discretized linearsystem model given

by the following,

x(k+ 1)=Ax(0)+Bu( ),

“where

1.0 00988 00410 ’0.0016
4| 00 09671 00721 00278
00 05768 04007 04378
0.0 02780 —0.5473 03738

00003 0.0007

g 0.0103  0.0206

T 02780 03605

06965 —0.1737

The design objective is to assign the
eigenvalues in the unit circle, and
A=0.6277+j0.3935, A=0.6277-j0.3935, A,
£/0.4274,0.5488], A, € [0.3867,0.4274]. Here, we
specify (wo eigenvalues in terms of subregion of
the unit circle instead of exact location. Using
the algorithm in the previous section, we can
obtain a gain matrix which can assign the
eigenvalues in the desired region,

Let wy=w,=05,and §A= E'&- E;, where
E,, are constant matrices determined by the
relation among the system uncertanties, §; are
uncertain parameters varying in the
intervals [—¢g, g1

Select A = 0.4490, A©® = 0.4066. Then we
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“have the following,
When, A'=(,5443, A,1'=0.4192.

p=1.0408, g=1.1304,

ke | 346575 72471 —04715 00038
T |—259833 —8.5993 —09024 —1.2349

‘When /=2, A,@=0.5488, A,2=0.3995,
p=1.0268, 0=1.1027,

e —IA9 72579 —04699 00037
—255079 —88153 —09306 —1232

Finally, we have when A" = 0.4643, 3, =
0.4032 and,

p=1.0057, a=1.0154,

K= —34.7765 —72618 —014743 0.0046
—26.2519 —86315 --09087 —1.2328

If A, and A;are given by a specification of
subregion in the unit circle, we can also apply
the algorithm to obtain the suitable gain malrix.

"CONCLUSION

"A robust control design method is presented in
this paper. The quantitative measures of
robustness and disturbance rejection are derived
by means of Lyapunov matrix equations.
Usually, the requirement of transient
performance of a dynamic system can be
achieved by assigning the eigenvalues of the
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“closed loop system. However, the robustness and

noise rejection requirements are obtained by the
selection of free design parameters. A stochastic
optimization algorithm is used to make the
selection from a set of feasible control gain
matrices.
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