
IJE TRANSACTIONS A: Basics Vol. 37, No. 01, (January 2024) 1194-1207

Please cite this article as: Yang X. Framework of Electric Vehicle Fault Diagnosis System Based on Diagnostic Communication. International
Journal of Engineering, Transactions C: Aspects. 2024;37(06):1194-207.

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Framework of Electric Vehicle Fault Diagnosis System Based on Diagnostic

Communication

X. Yang*

Automobile & Rail Transportation School, Tianjin Sino-German University of Applied Sciences, Tianjin, China

P A P E R I N F O

Paper history:
Received 02 Novembr 2023
Received in revised 06 December 2023
Accepted 24 December 2023

Keywords:
Electric Vehicle
AUTOSAR
Fault Diagnosis
Fusion

A B S T R A C T

With the escalating integration of Electronic Control Units (ECUs) in contemporary vehicles, the

intricacy of vehicle networks is incessantly advancing. Diagnostic communication, as a pivotal facet
within these networks, grapples with protracted development cycles and heightened intricacies. In a bid

to augment software reusability and portability, this study meticulously scrutinized pertinent research

and proffered an electric vehicle fault diagnosis system predicated on the Controller Area Network
(CAN) bus, leveraging the diagnostic communication architecture advocated by the AUTOSAR

standard. The integration of AUTOSAR seeks to pioneer an innovative software development paradigm

for automotive fault diagnosis systems, thereby remedying extant limitations. The communication and
diagnostic module of this study were instantiated using AUTOSAR, thereby obviating the necessity for

developers to immerse themselves in hardware intricacies and communication implementations. This

allows developers to focalize their efforts on crafting software features for fault diagnosis. Empirical

results illustrate that the single-core CPU utilization rate of the proposed method in this article stands at

40.68%, with a fault detection time of 0.0217. The success rate of fault detection is 98.70%, indicating

an increase of 12.97% and 8.98% when compared to the CAN bus and structural analysis methods,
respectively. Testing indicators are significantly mitigated, yielding more precise fault detection

outcomes. The exploration of this avant-garde software development methodology in automotive

electronic products markedly amplifies the efficiency of automotive troubleshooting system software,
underscoring its potential for academic contribution and application in real-world scenarios.

doi: 10.5829/ije.2024.37.06c.16

Graphical Abstract1

*Corresponding Author Email: yangxiaogang@tsguas.edu.cn (X. Yang)

mailto:%20yangxiaogang@tsguas.edu.cn

X. Yang / IJE TRANSACTIONS C: Aspects Vol. 37 No. 06, (June 2024) 1194-1207 1195

1. INTRODUCTION

Approximately 70% of the time spent in the maintenance

process of traditional cars is devoted to fault

identification, with the remaining 30% allocated to

troubleshooting. In comparison to conventional vehicles,

the electrical system of pure electric vehicles is more

intricate and electronic in nature. It encompasses several

subsystems, such as the vehicle, drive motor, battery

management, high-voltage electrical safety, instrument

panel control, auxiliary power system, air conditioning,

power steering, and electronic brakes. Each subsystem

carries out its functions through its dedicated Electronic

Control Unit (ECU), and communication between ECUs

is facilitated through the Controller Area Network (CAN)

bus network, ensuring the coordinated operation of the

entire vehicle (1-3).

Gholami and Sanjari (4) designed a real-time fault

diagnosis system for pure electric vehicles. This system

can promptly identify potential faults and implement

appropriate strategies to ensure the safe and reliable

operation of vehicles. Bhosale and Mastud (5) developed

a fault diagnosis system for pure electric vehicles based

on the CAN bus. They completed the design of a fault

diagnosis instrument for pure electric vehicles and tested

the fault diagnosis system with CANoe software.

Ahmadigorji and Mehrasa (6) used the structural analysis

method to establish a fault diagnosis system for the power

system of pure electric vehicles. Jian et al. (7) established

diagnosis rules and constructed the corresponding fault

tree based on the study of fault diagnosis technology for

pure electric vehicles. Subsequently, a set of expert fault

diagnosis system models was designed using WPF

software language to enhance fault diagnosis efficiency

and compensate for the lack of technical expertise among

after-sales personnel. Ochando et al. (8) developed a pure

electric vehicle status monitoring and fault diagnosis

system based on the onboard CAN network. They

utilized LabVIEW and Kvaser USBcan communication

card to achieve real-time monitoring of the status and

fault information of pure electric vehicles during

operation. Faults were analyzed based on monitored

status and specific fault phenomena when encountered,

leading to effective solutions. Wang (9) studied the fault

diagnosis of the distributed control system of electric

vehicles based on the CAN bus. This involved

discussions on fault diagnosis modes, fault monitoring

and diagnosis methods, and the coding method of fault

codes (DTC) and fault information for electric vehicles,

representing a valuable exploration into the in-depth

study of electric vehicle fault diagnosis based on the

CAN bus.

As the integration of Electronic Control Units (ECUs)

with modern vehicles continues to rise, the complexity of

the entire vehicle network is increasing. As a critical

function within the onboard network, the development

cycle and difficulty of diagnostic communication are

escalating. To enhance software reuse and portability,

this paper develops an electric vehicle fault diagnosis

system based on the CAN bus, incorporating the

diagnostic communication architecture recommended by

the AUTOSAR standard through an analysis of relevant

research.

2. INTRODUCTION TO RELATED THEORIES

2. 1. AUTOSAR Architecture Haur (10)

endeavored to implement crucial functions within an

automotive electronic software system, with the

objective of standardizing functional interfaces. This

standardization facilitates the seamless integration and

effective reuse of software modules, thereby enhancing

the efficiency of software updates and development

processes. To achieve this, the software architecture is

structured into three layers: the application layer, the run-

time environment layer, and the base software layer. This

hierarchical and modular approach aligns with

contemporary software development and design

philosophy (11), as illustrated in Figure 1.

2. 1. 1. Application Layer The application

architecture of AUTOSAR comprises interconnected

software components (SWCs) linked through a virtual

function bus. Each SWC incorporates one or more ports,

and these SWCs establish connections through these

ports. Within the SWCs, running entities (REs) represent

the smallest code fragments, eventually mapped to

specific operating system (OS) tasks and scheduled by

the OS to execute corresponding functions (12).

To facilitate system integration, AUTOSAR

introduces the Virtual Function Bus (VFB) (13). The

VFB enables the design of application software without

direct dependence on the underlying hardware and

communication mechanisms. SWCs communicate

through ports, interacting with hardware resources via the

VFB. This design choice renders the application layer

software implementation independent of the specific

hardware, thereby significantly enhancing the portability

of the application software.

2. 1. 2. RTE Layer At the core of the AUTOSAR

architecture lies the Run-time Environment (RTE),

serving as a tangible realization of the Virtual Function

Bus (VFB). The RTE plays a pivotal role by mapping

Running Entities (REs) within all Software Components

(SWCs) on the local Electronic Control Unit (ECU) to

tasks in the operating system (OS). It is responsible for

establishing communication among these REs. In cases

where REs are mapped to different ECUs, the RTE takes

on the responsibility of facilitating communication

between them.

1196 X. Yang / IJE TRANSACTIONS C: Aspects Vol. 37 No. 06, (June 2024) 1194-1207

Application Layer

Runtime Environment

Memory Services Crypto Services

Off-board

Communication

Services

Communication

Services

Microcontroller

Microcontroller

Drivers
Memory Drivers Crypto Drivers

System Services

I/O

 Hardware

 Abstraction

Complex

 Drivers

Memory

Hardware

Abatraction

Onboard device

 Abatraction

Wireless

communication

HW Abatraction

Crypto

Hardware

Abatraction

communication

Hardware

Abatraction

Wireless

communication

Drivers

communication

Drivers
I/O Drivers

Figure 1. AUTOSAR architecture

Furthermore, the RTE is instrumental in

implementing the segregation between application and

base software. It provides communication services

between SWCs in the application layer and acts as a

conduit for communication within single ECU systems or

across multi-ECU systems (14). The RTE defines

interfaces for data communication between application

layer SWCs and the underlying software modules. This

includes standardizing interfaces for input/output (I/O),

storage, and other fundamental accesses, thus ensuring

the application's independence from underlying hardware

characteristics.

2. 1. 3. Base Software Layer The base software

layer serves as a crucial foundation, delivering essential

services to the application layer's software components.

These services encompass a spectrum of functionalities,

including underlying hardware drivers, bus and network

communication, real-time task scheduling, vehicle

troubleshooting, and other foundational services.

Comprising approximately 80 base software modules,

this layer is organized into the microcontroller

abstraction layer, ECU abstraction layer, service layer,

and complex driver layer, following a bottom-up

hierarchy.

The microcontroller abstraction layer, ECU

abstraction layer, service layer, and complex driver layer

collectively enable applications to access microcontroller

hardware resources directly. This access is facilitated

through the complex driver layer, allowing the

implementation of intricate sensor and controller

operations, such as fuel injection, ignition control, and

other specific and complex functions. The complex

driver layer is particularly valuable for implementing

hardware resources not supported by AUTOSAR or not

standardized, while ensuring compliance with real-time

requirements for specific operations (15).

2. 2. AUTOSAR Diagnostic Functions The

diagnostic-related modules within the AUTOSAR

automotive electronics software architecture are depicted

in Figure 2.

The Function Inhibition Manager (FIM) module

plays a pivotal role in enabling or disabling functional

entities within the software component based on event

statuses reported by the Diagnostic Event Manager

(DEM). The Diagnostic Communication Manager

(DCM) and DEM serve as core modules responsible for

implementing the diagnostic functions inherent in

AUTOSAR. As of the current version, AUTOSAR

version 3.1 diagnostics encompass a comprehensive suite

of 9 On-Board Diagnostics (OBD) services.

2. 3. Multi-sensor Information Fusion
2. 3. 1. Multi-sensor Information Fusion Concept
Multi-sensor fusion, commonly known as data fusion,

involves amalgamating pertinent information gathered

by various environmental sensing sensors installed on an

innovative electric vehicle. The synthesis of information

detected by multiple sensors, when combined and

complemented, addresses the limitations of individual

sensors under external influences. This collaborative

approach mitigates the risk of decision errors and

enhances overall recognition capabilities (16–19).

The integration of information data and the location

of fusion delineate three distinct levels from low to high

abstraction: the data layer (sensor-level data fusion),

feature layer (central-level data fusion), and decision

layer (hybrid data fusion).

(1) Data Layer Fusion

X. Yang / IJE TRANSACTIONS C: Aspects Vol. 37 No. 06, (June 2024) 1194-1207 1197

Monitor Function SW-C
Filter Services

(Optional)

SW-C For indicator

(e.g.Lamps .)

FIM

ECU State Mnager

DEM

NVRAM Manager DCM

PDU Router

CAN TP

CAN Interface

CAN

Transceiver

Driver

Driver for

external CAN

ASIC

CAN Driver

Microcontroller

N-PDU

I-PDU

I-PDU

Runtime Environment (RTE)

System Servise Memery Servise Communication

Servise

Servicer Larer

ECU Abstraction Larer

Microcontroller Abstraction Larer

Figure 2. AUTOSAR Diagnostic functions

At the lowest fusion level, known as data layer fusion,

raw data is directly transmitted to the fusion center

without undergoing any preliminary processing or

analysis. The process of data layer fusion is illustrated in

Figure 3.

This fusion level, while minimizing original data

loss, is characterized by extensive redundant data

processing, resulting in compromised real-time

robustness and interference resistance.

(2) Feature Layer Fusion

Feature layer fusion involves extracting target

features, such as boundary, distance, velocity, size,

orientation, and angle, through simple filtering.

Subsequently, the collected data undergoes classification

and analysis to eliminate invalid information before the

actual data fusion process. The feature layer fusion

process is depicted in Figure 4.

This fusion level necessitates preliminary data

processing, involving the compression of raw data

information to ensure effective real-time processing.

However, this approach may introduce the potential loss

of critical raw data, leading to biases in the fusion results

(20).

(3) Decision-Level Integration

Decision-level fusion entails the amalgamation of

local decisions made by sensors through a mid-level

Figure 3. Data layer fusion process

1198 X. Yang / IJE TRANSACTIONS C: Aspects Vol. 37 No. 06, (June 2024) 1194-1207

Figure 4. Feature layer fusion process

fusion processor. This occurs subsequent to the pre-

processing of collected data for tasks such as

classification, identification, and decision-making. The

decision layer fusion process is illustrated in Figure 5.

Since the fusion process is not directly involved in system

decision-making, it guarantees flexibility in fusion and

robust anti-interference capabilities. Even if certain

sensor functions experience failure, it does not result in

significant errors in the fusion results. However, the

trade-off is that the pre-processing of data becomes more

intricate, thereby increasing the processing difficulty.

2. 3. 2. Methods for Multi-sensor Information
Fusion The algorithm for information fusion in

electric vehicles, leveraging multiple sensors,

incorporates a range of techniques, including weighted

average, Kalman filter, Bayesian estimation, D-S

evidence theory, fuzzy logic inference, and artificial

neural network (21-23). In this paper, the approach

employed is the weighted average method.
Let the target data acquired by multiple sensors be

denoted as 𝑎1, 𝑎2… , 𝑎𝑛, with variances 𝜎1
2, 𝜎2

2… , 𝜎𝑛
2, t

and the corresponding weights of each sensor as

𝑙1, 𝑙2… , 𝑙𝑛. After fusion, the resulting state data is:

�̃� = 𝑙1𝑎1 + 𝑙2𝑎2 +⋯+ 𝑙𝑛𝑎𝑛 = ∑

𝑖=1
𝑛

𝑙𝑖𝑎𝑖
(1)

Figure 5. Decision-level integration process

The weighting conditions are defined as follows:

∑

𝑖=1
𝑛

𝑙𝑖 = 1
(2)

If each sensor weight is equally distributed, with

equal weights denoted as 𝑙 =
1

𝑛
, then the fused data can

be expressed as:

�̃� = ∑

𝑖=1
𝑛

𝑙𝑖𝑎𝑖 =
1

𝑛
∑

𝑖=1
𝑛

𝑎𝑖
(3)

The total variance after fusion is given by:

𝜎2 = 𝐸[(𝑎 − �̃�)2] = 𝐸 [∑

𝑖=1
𝑛

𝑙𝑖(𝑎 − 𝑎𝑖)]

2

 (4)

𝐸[(𝑎 − 𝑎𝑖)(𝑎 − 𝑎𝑗)] = 0(𝑖, 𝑗 = 1,2,3, … , 𝑛, 𝑖 ≠ 𝑗) (5)

The total variance of the weighted average fusion

algorithm is calculated as follows:

𝜎2 =
∑

𝑖=1
𝑛
𝜎𝑖
2

𝑛2
(6)

3. DESIGN AND IMPLEMENTATION OF
COMMUNICATION DIAGNOSIS MODULE

3. 1. Design for Information Fusion Information

fusion technology integrates processed multi-sensor

X. Yang / IJE TRANSACTIONS C: Aspects Vol. 37 No. 06, (June 2024) 1194-1207 1199

information to delineate specific characteristics of the

external environment or the object under observation. In

modern society, sensors play a fundamental role, serving

as essential tools for monitoring the surrounding

environment. They provide a tangible representation of

the world to human perception and contribute

significantly to technological progress. As depicted in

Figure 6, the information fusion process in this paper

unfolds in four distinct steps:

(1) Acquisition of Experimental Data: Data is

collected in various scenarios, and the raw sensor data

obtained is segmented into samples and labeled. These

data serve as the foundation for the information fusion

process.

(2) Extraction of Features: Feature extraction is

conducted separately on the data, yielding features that

constitute the feature layer for information fusion.

(3) Training the Respective Recognition Models: The

features from the feature layer undergo training using

various machine learning algorithms, resulting in the

creation of recognition models and their respective

decision results.

(4) Decision Layer Fusion: The decision results

obtained in the third step are amalgamated using a

designed fusion method, ultimately yielding the final

recognition result.

3. 2. Design of AUTOSAR Communication Module
The design and implementation flow of the AUTOSAR

communication module is depicted in Figure 7.

Firstly, through a comprehensive study of the

AUTOSAR communication module standard, the entire

file structure of the communication module is designed

to capture the overarching design process from a macro

perspective.

Secondly, the module undergoes configuration based

on the AUTOSAR methodology. The configuration set is

acquired by visually representing the module

configuration using the self-developed ECU

configuration tool, ReDe (24, 25).

Next, the data structure and standard function

interfaces of the communication driver and interface

layers are implemented in accordance with the

specification.

Figure 6. Information Fusion

1200 X. Yang / IJE TRANSACTIONS C: Aspects Vol. 37 No. 06, (June 2024) 1194-1207

Figure 7. Design of AUTOSAR communication module

Finally, the complete AUTOSAR communication

module is implemented in conjunction with the hardware

ECU characteristics. To ensure the reliability and

reusability of the module, thorough testing and analysis

are conducted post-implementation to identify and rectify

any errors that may have occurred throughout the entire

design and implementation process.

3. 2. 1. AUTOSAR Communication Module File
Structure Given the extensive and intricate nature

of the AUTOSAR software architecture, we illustrate the

communication system using the CAN bus as an

exemplary case. The CAN bus stands out as a highly

prevalent Fieldbus in the automotive domain and is

widely adopted in current vehicle communication

systems. Notably, it serves as the primary Fieldbus for

European and American models, which constitute a

substantial portion of the vehicle fleet in China. As a

result, the CAN bus is ubiquitously employed in virtually

all bus technology-equipped models in China (26, 27). In

Figure 8, the file structure is presented, meticulously

designed in accordance with the AUTOSAR

communication specification.

3. 2. 2. Communication Module File Structure
The communication driver layer provides a 'Can.h'

header file encompassing the definitions of the CAN

module API, incorporating variables, global data, and

types meant exclusively for internal use by the CAN

driver. Simultaneously, the CAN layer furnishes

'Can_Cfg.h' to house configuration parameter

information necessary during the pre-compilation phase.

The specific services are then implemented in 'Can.c'

(28).

Concurrently, the communication interface layer

contributes the 'CanIf.h' header file, featuring external

variables, global parameters, and services outlined in the

specification. These elements are declared in 'CanIf.c'

and are restricted to internal usage within the CanIf layer.

'Can_GeneralTypes.h' defines the general data structures

Figure 8. File structure designed for AUTOSAR communication specifications

of the Can driver layer, utilized by the CanIf layer (29,

30). Additionally, 'ComStack_Types.h' encapsulates the

definitions of communication-related types, while

'std_Types.h' contains standard type definitions for

AUTOSAR.

Upon the incorporation of a communication service

module, the headers of each service are added to both the

driver and interface layers. The file structure of the

communication module is visually represented in Figure

9.

The data sending and receiving process is illustrated

in Figure 10. During the transmission, the interface layer

assumes the responsibility of assembling data from the

upper layers into CAN protocol layer data units, adhering

to the CAN specification format. It then invokes

'CanIf_Transmit()' and transfers this data frame to the

driver layer. Subsequently, the driver layer employs

'Can_Write()' to initiate the transfer request from the

controller. In cases where no hardware object is

available, the request is buffered and transmitted once the

hardware becomes available. Upon successful

transmission, a transmission success confirmation is

dispatched to the upper layer module as a callback

function, signifying a successful transmission action

when received by the sender.

On the reception end, the driver layer reads data from

the bus through polling or interrupt mechanisms.

Following data regularization, it invokes

'CanIf_RxIndication()' to signal the arrival of the data to

the interface layer. The interface layer, upon receiving

the CAN data frame from the driver layer, validates and

filters the Data Length Code (DLC). After extracting

pertinent information, the interface layer communicates

the reception event to the corresponding module in the

upper communication service layer via

'user_RxIndication()'. If an error is detected during

reception, the corresponding processing function is

invoked. Additionally, the indication of the data arrival

to the upper layer is halted.

3. 3. Design of AUTOSAR diagnostic module The

Diagnostic Event Manager (DEM) module, in

collaboration with the Software Component (SWC),

undertakes the diagnosis of an event within the

AUTOSAR system. Upon a change in the event status,

the DEM is responsible for notifying the relevant SWC

indicator module and various software modules. This

notification allows for the display or handling of the

detected fault. Additionally, the DEM enables other

modules to query and modify the event's status at any

given time.

Within the DEM, a counter records the judgment

result, with a minimum value of -128 and a maximum

value of 127. Upon receiving a message marked as

'PREPASSED,' the counter is decremented by one step.

When the counter reaches a predefined threshold value,

the event is deemed to be a fault. Following the diagnosis

of a fault, the DEM generates a Diagnostic Trouble Code

(DTC) based on the collected information and relevant

criteria. This DTC provides valuable information about

the detected fault.

The AUTOSAR diagnostic process is visually

represented in Figure 11.

After diagnosing a fault, the Diagnostic Event

Manager (DEM) calls the relevant Non-Volatile Random

Access Memory (NVRAM) interface to store data.

Events may involve storing various data types, broadly

categorized as FreezeFrame and Extended Data Record.

Figure 9. Can driver and interface layer configuration

X. Yang / IJE TRANSACTIONS C: Aspects Vol. 37 No. 06, (June 2024) 1194-1207 1201

1202 X. Yang / IJE TRANSACTIONS C: Aspects Vol. 37 No. 06, (June 2024) 1194-1207

Figure 10. Flow chart for sending and receiving data

Figure 11. ASW for Electric Vehicle Diagnostic System

FreezeFrame captures information about the

environment and data at the time of the fault, while

Extended Data Record includes information from

software modules, such as frequency clock data. Due to

the possibility of multiple data collection instances, there

can be more than one FreezeFrame for a single event. The

continuity of time-related data may be influenced by

different sources and storage times.

In the diagnostic service processing, the Diagnostic

Communication Manager (DCM) module follows a

defined flow illustrated in Figure 12. Three sub-modules,

namely DSL, DSD, and DSP, are developed within the

DCM module to meet specific requirements. DSL

interacts directly with the Protocol Data Unit Router

(PduR), facilitating the reception and transmission of

service response messages to fulfill service requests.

X. Yang / IJE TRANSACTIONS C: Aspects Vol. 37 No. 06, (June 2024) 1194-1207 1203

Upon receiving a DiagnosticsessionControl (0x10)

service, DSL switches the diagnostic session mode,

providing timing parameters such as the time interval for

the requesting party to receive the service response

message (P2CAN_Client). This interval sets the timeout

mechanism of the application layer in the current session

mode. When receiving a SecurityAccess (0x27) service,

DSL returns the seed, verifies the received key, and

decides whether to grant security access. DSL resets the

session timeout timer, maintaining the current session

mode without forwarding the service to the Diagnostic

Service Dispatcher (DSD) for further processing.

DSD, the second module, verifies the validity of the

service request message, checking supported services,

session modes, security rights, and ECU status. If the

message is valid, DSD routes the request to the

Diagnostic Service Processor (DSP) module for

execution. DSP, the third module, executes the precise

service request operation. For tasks like reading or

clearing fault information, DSP accesses the DEM

module. For data upload/download or reading data

streams, DSP accesses the memory stack. For input and

output control requests, DSP uses

DCM_Send/ReceiveSignal() to interact with the Runtime

Environment (RTE) and access the Software Component

(SWC).

4. TROUBLESHOOTING TESTS

To validate the accuracy of the fault determination in the

diagnostic system and assess the system's configurability,

this paper conducts tests on several commonly used

services, as outlined in Table 1.

The Diagnostic Trouble Code (DTC) serves as an

identification code presented when a fault occurs or is

detected in an Electronic Control Unit (ECU). The fault

information corresponding to the DTC can be retrieved

by referencing a lookup table. A DTC comprises two

parts: DTC Category and Failure Type. The DTC

Figure 12. DCM flow chart

TABLE 1. Diagnostic Services

Service ID Service name

0X10 Diagnostic session control

0x27 Secure access control

0x22 Read data according to the data identifier

0x2E Write data according to the data identifier

0x19 Read DTC according to the status mask

0x14 Clear DTC

Category can be further categorized into four

subsystems: Powertrain, Body, Chassis, and Network.

For our testing purposes, two DTCs, 0x00599A and

0x00559C, are configured with DID 0x2345, parameters

P2 set to 50 ms, and P2* set to 5 s. CAN messages are

transmitted and parsed following the ISO15765-2 and

ISO11898-1 protocol specifications.

We conduct tests on the three sub-services of the 0x10

service using the diagnostic control tool in CANoe, and

the results of these tests are summarized in Table 2.

1204 X. Yang / IJE TRANSACTIONS C: Aspects Vol. 37 No. 06, (June 2024) 1194-1207

TABLE 2. Diagnostic session-related service tests

Service ID S/R Data Result

10 01

Send
02 10 01 00 00 00

00 00 Default session

switching

through Receive
06 50 01 00 32 01

F4 00

10 02

Send
02 10 02 00 00 00

00 00 Refresh session

switch passed
Receive

06 50 02 00 32 01

F4 00

10 03

Send
02 10 03 00 00 00

00 00

Extended

session
switching

through Receive
06 50 0300 32 01

F4 00

Based on the preceding test results, all three sub-

service switches of the Diagnostic Session Control 0x10

service were successfully executed, with the

corresponding parameters returned. Subsequently,

service tests related to diagnostic fault codes (DTC) are

detailed in Table 3.

From the aforementioned tests, the Read DTC (0x19

02) and Clear DTC (0x14) tests were successfully

executed based on the status mask, while the Report DTC

Number (0x19 01) test, also based on the status mask, did

not pass. The configuration for the 0x19 01 service was

not in place during the setup, and it appropriately

returned a Negative Response Code (NRC) of 0x12,

indicating that the sub-service is not supported—a

correct result.

Service tests related to reading and writing data based

on Data Identifiers (DID) are elaborated in Table 4.

Building on the preceding test outcomes, the Read

and Write Data by Data Identifier (0x22 and 0x2E)

TABLE 3. DTC-related service testing

Service ID S/R Data Result

19 02

Send
03 19 02 2F 00

00 00 00

Read the DTC

according to the
status mask and

pass the test

Receive
10 0B 59 02 FF

00 59 9A

Send
30 00 14 00 00

00 00 00

Receive
21 2F 00 59 9C

2F 00 00

14

Send
04 14 FF FF FF

00 00 00 Clear DTC,

service test

passed Receive
01 54 00 00 00

00 00 00

19 01

Send
03 19 01 7F 00

00 00 00
Service failed

Receive
03 7F 19 12 00

00 00 00

TABLE 4. DID-related service testing

Service ID S/R Data Result

22

Send
03 22 23 45

00 00 00 00 Read DID value

successfully
Receive

04 62 23 45

55 00 00 00

2E

Send
04 2E 23 45

EB 00 00 00 The value of DID
was modified

successfully Receive
03 6E 23 45

00 00 00 00

22

Send
03 22 23 45

00 00 00 00 Successfully read

and re-write the

DID value Receive
04 62 23 45

EB 00 00 00

22

Send
03 22 23 44

00 00 00 00 Failure to read a

value that does not

support DID Receive
03 7F 22 31

00 00 00 00

service passed successfully. However, when attempting

to read an unassigned Data Identifier (DID), the service

appropriately returned a Negative Response Code (NRC)

of 0x31.

To enhance security, the Vehicle Security Bridge

(VSB) was reconfigured to establish the security access

level and session for the DTC reading service. This

adjustment ensures correct reading and clearing of DTCs

if the security access level and session credentials are

successfully authenticated.

TABLE 5. Security access-related testing

Service ID S/R Data Result

10 03

Send
02 10 03 00 00 00

00 00 Extended
Session

Switching Receive
50 03 00 32 01 F4

00 00

27 01

Send
02 27 01 00 00 00

00 00 Request seeds

and return them

successfully Receive
67 01 12 34 00 00

00 00

27 02

Send
04 27 02 12 39 00

00 00
Successfully

send the key and

successfully

match the key Receive
07 02 00 00 00 00

00 00

19 02

Send
03 19 02 2F 00 00

00 00

Read DTC

according to the
status mask; the

test passes

Receive
10 0B 59 02 FF 00

59 9A

Send
30 00 14 00 00 00

00 00

Receive
21 2F 00 59 9C 2F

00 00

X. Yang / IJE TRANSACTIONS C: Aspects Vol. 37 No. 06, (June 2024) 1194-1207 1205

14

Send
04 14 FF FF FF 00

00 00 Clear DTC, the

test passes
Receive

01 54 00 00 00 00

00 00

10 01

Send
02 10 01 00 00 00

00 00 Default session

switching is done
Receive

06 50 01 00 32 01

F4 00

19 02

Send
03 19 02 2F 00 00

00 00 Security level

not passed,

cannot read DTC Receive
30 7F 19 33 00 00

00 00

The results presented in Table 5 demonstrate the

successful reading of Diagnostic Trouble Codes (DTC)

when the session and security levels are validated.

Conversely, in cases of session and security level failure,

the service appropriately returned a Negative Response

Code (NRC) of 0x33, indicating failed security

verification.

To further substantiate the superiority of the proposed

method, a comparative analysis of fault detection time

and fault detection rates was conducted among three

different methods. The experimental comparison results

are detailed in Table 6.

The results depicted in Table 6 unequivocally

showcase the superiority of our proposed method over

the other two methods (5, 6), particularly in terms of fault

detection rate and detection time.

TABLE 6. Comparison of Fault Detection Rate

Solution
Single core CPU

occupancy rate

Fault

detection

success rate

Fault

detection

time

CAN bus [5] 74.94% 85.73% 0.0319

Structural analysis

method [6]
68.53% 89.72% 0.0247

Our 40.68% 98.70% 0.0217

5. CONCLUSION

Building upon the existing electric vehicle fault diagnosis

system, this paper delineates the design and

implementation of an electric vehicle fault detection

system adhering to the AutoSAR standard. The design

encompasses diagnostic communication and function

modules based on the diagnostic protocol, and

comprehensive testing has been conducted. The proposed

method showcases remarkable attributes, boasting a

single-core CPU utilization rate of merely 40.68%, a fault

detection time as low as 0.0217 seconds, and an

impressive fault detection success rate of 98.70%. In

direct comparison with the CAN bus and structural

analysis methods, our proposed method outperforms,

exhibiting a 12.97% and 8.98% improvement in fault

detection success rates, respectively. Notably, this

achievement is accompanied by more efficient test

indices, resulting in heightened accuracy in fault

detection results.

6. DATA AVAILABILITY STATEMENT

The labeled dataset used to support the findings of this

study is available from the corresponding author upon

request.

7. FUNDING STATEMENT

This study was supported by Self-made teaching

instruments and equipment project of Tianjin Sino

German University of applied technology. （ No.

ZDZY2020-02A）

8. AUTHORSHIP CONTRIBUTION STATEMENT

Xiaogang YANG: Writing-Original draft preparation

Conceptualization, Supervision, Project administration.

9. REFERENCES

1. Abedinia O, Shorki A, Nurmanova V, Bagheri M. Synergizing

Efficient Optimal Energy Hub Design for Multiple Smart Energy
System Players and Electric Vehicles. IEEE Access.

2023;11:116650-116664. 10.1109/ACCESS.2023.3323201.

2. Lu M, Abedinia O, Bagheri M, Ghadimi N, Shafie‐khah M,
Catalão JPS. Smart load scheduling strategy utilising optimal

charging of electric vehicles in power grids based on an

optimisation algorithm. IET Smart Grid. Wiley Online Library;

2020;3(6):914–23. 10.1049/iet-stg.2019.0334

3. Abedinia O, Lu M, Bagheri M. An improved multicriteria

optimization method for solving the electric vehicles planning
issue in smart grids via green energy sources. IEEE Access.

2019;8:3465–81. 10.1109/ACCESS.2019.2960557

4. Gholami M, Sanjari MJ. Optimal Operation of Multi-Microgrid

System Considering Uncertainty of Electric Vehicles.

International Journal of Engineering. Materials and Energy
Research Center; 2023;36(8):1398-1408

10.5829/ije.2023.36.08b.01

5. Bhosale AP, Mastud SA. Comparative Environmental Impact
Assessment of Battery Electric Vehicles and Conventional

Vehicles: A Case Study of India. International Journal of

Engineering. Materials and Energy Research Center;

2023;36(5):965–78. 10.5829/ije.2023.36.05b.13

6. Ahmadigorji M, Mehrasa M. A robust renewable energy source-

oriented strategy for smart charging of plug-in electric vehicles
considering diverse uncertainty resources. International Journal

1206 X. Yang / IJE TRANSACTIONS C: Aspects Vol. 37 No. 06, (June 2024) 1194-1207

of Engineering, Transactions A: Basics. 2023;36(4):709–19.

10.5829/ije.2023.36.04a.01

7. Jian Y, Qing X, Zhao Y, He L, Qi X. Application of model-based

deep learning algorithm in fault diagnosis of coal mills.
Mathematical Problems in Engineering Hindawi Limited;

2020;2020:1–14. 10.1155/2020/3753274

8. Ochando FJ, Cantero A, Guerrero JI, León C. Data Acquisition
for Condition Monitoring in Tactical Vehicles: On-Board

Computer Development. Sensors. MDPI; 2023;23(12):5645.

10.3390/s23125645

9. Wang Y. Design of Electric Drive System of Electric Vehicle

Based on CAN Bus. In: Journal of Physics: Conference Series.
IOP Publishing; 2021;1982(1): 012131. 10.1088/1742-

6596/1982/1/012131

10. Haur I. AUTOSAR compliant multi-core RTOS formal modeling
and verification (Doctoral dissertation, École centrale de Nantes).

2022. https://theses.hal.science/tel-04025811/

11. Staron M, Staron M. AUTOSAR (AUTomotive Open System
ARchitecture). Automotive Software Architectures: An

Introduction. Springer; 2021;97–136. 10.1007/978-3-030-65939-

4_5

12. AUTOSAR GbR. AUTOSAT Methodology V1.2.1. 2008;

13. AUTOSAT GbR. Specification of the Viretual Functional Bus

V1.0.1 . 2008;

14. AUTOSAT GbR. Specification of Run-Time Environment

V2.0.1 R3.0 Rev001 . 2008;

15. Khenfri F, Chaaban K, Chetto M. Efficient mapping of runnables
to tasks for embedded AUTOSAR applications. Journal of

Systems Architecture. Elsevier; 2020;110:101800.

10.1016/j.sysarc.2020.101800

16. Amato F, Coppolino L, Mercaldo F, Moscato F, Nardone R,

Santone A. CAN-bus attack detection with deep learning. IEEE

Transactions on Intelligent Transportation Systems. IEEE;

2021;22(8):5081–90. 10.1109/TITS.2020.3046974

17. AUTOSAR GbR. Specification of CAN Interface [EB/OL]. .

2009;

18. Chen W, Wang Y, Zhang Z, Qian Z. Syzgen: Automated

generation of syscall specification of closed-source macos

drivers. 2021 ACM SIGSAC Conference on Computer and
Communications Security. 2021:ACM.749–63.

10.1145/3460120.3484564

19. Zhang K, Liu Y, Zhang J, Zhang G, Jin J, Li Y, et al. TDCA:
improved optimization algorithm with degree distribution and

communication traffic for the deployment of software

components based on AUTOSAR architecture. Soft comput.

Springer; 2023;27(12):7999–8012.10.1007/s00500-023-07989-1

20. Sandhya Devi RS, Sivakumar P, Balaji R. AUTOSAR

architecture based kernel development for automotive
application. International Conference on Intelligent Data

Communication Technologies and Internet of Things (ICICI)

2018. 2019:Springer.10.1007/978-3-030-03146-6_104

21. Ran Z, Yan H, Zhang H, Li Y. Approximate optimal AUTOSAR
software components deploying approach for automotive E/E

system. International Journal of Automotive

Technology.2017;18:1109-1119. 10.1007/s12239-017-0108-3

22. Lv J, Qu C, Du S, Zhao X, Yin P, Zhao N, et al. Research on

obstacle avoidance algorithm for unmanned ground vehicle based

on multi-sensor information fusion. Mathematical Biosciences

and Engineering.2021;18(2):1022–39. 10.3934/mbe.2021055

23. Duan M, Darvishan A, Mohammaditab R, Wakil K, Abedinia O.

A novel hybrid prediction model for aggregated loads of buildings
by considering the electric vehicles. Sustain Cities Soc.

2018;41:205–19. 10.1016/j.scs.2018.05.009

24. Kuspan B, Bagheri M, Abedinia O, Naderi MS, Jamshidpour E.

The influence of electric vehicle penetration on distribution

transformer ageing rate and performance. 2018 7th International
Conference on Renewable Energy Research and Applications

(ICRERA). 2018: IEEE. 10.1109/ICRERA.2018.8566966

25. Nurmanova V, Sultanbek A, Bagheri M, Ahangar RA, Abedinia
O, Phung T, et al. Distribution Transformer Frequency Response

Analysis: Behavior of Different Statistical Indices During Inter-

disk Fault. 2019 IEEE International Conference on Environment
and Electrical Engineering and 2019 IEEE Industrial and

Commercial Power Systems Europe (EEEIC/I&CPS Europe).

2019:IEEE. 10.1109/EEEIC.2019.8783252

26. Devi RSS, Kumar BV, Sivakumar P, Lakshmi AN, Tripathy R.

Bootloader design for advanced driver assistance system.

Software Engineering for Automotive Systems. Boca Raton:CRC

Press;2022. p. 31-44

27. Devi RSS, Sivakumar P, Lakshmi AN, Tripathy R. 3 Design

Bootloader Advanced Driver Assistance System. Software
Engineering for Automotive Systems: Principles and

Applications. Boca Raton: CRC Press; 2022. p.31-44

28. Xiao D, Wang N, Shen X, Landulfo E, Zhong T, Liu D.
Development of ZJU high-spectral-resolution LiDAR for aerosol

and cloud: Extinction retrieval. Remote Sensing.

2020;12(18):3047. 10.3390/rs12183047

29. Wang N, Shen X, Xiao D, Veselovskii I, Zhao C, Chen F, et al.

Development of ZJU high-spectral-resolution lidar for aerosol

and cloud: Feature detection and classification. Journal of
Quantitative Spectroscopy and Radiative Transfer.

2021;261:107513. 10.1016/j.jqsrt.2021.107513

30. Liu D, Yang Y, Cheng Z, Huang H, Zhang B, Shen Y.
Development of the ZJU polarized near-infrared high spectral

resolution lidar. International Symposium on Photoelectronic

Detection and Imaging 2013: Laser Sensing and Imaging and

Applications. 2013: SPIE. 10.1117/12.2035435

X. Yang / IJE TRANSACTIONS C: Aspects Vol. 37 No. 06, (June 2024) 1194-1207 1207

COPYRIGHTS

©2024 The author(s). This is an open access article distributed under the terms of the Creative Commons

Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long

as the original authors and source are cited. No permission is required from the authors or the publishers .

Persian Abstract

 چکیده
دی در در وسایل نقلیه مدرن، پیچیدگی شبکه های وسایل نقلیه نیز به طور مداوم در حال افزایش است. ارتباطات تشخیصی، به عنوان یک عملکرد کلی ECUبا افزایش ادغام

حمل بودن نرم افزار، این مطالعه شبکه های وسایل نقلیه، با چرخه های توسعه طولانی تر و دشواری های بالاتری مواجه است. به منظور بهبود قابلیت استفاده مجدد و قابل

با استفاده از معماری ارتباط تشخیصی توصیه شده توسط CANتحقیقات مربوطه را تجزیه و تحلیل کرد و یک سیستم تشخیص عیب خودروی الکتریکی را بر اساس گذرگاه

فزار جدید برای سیستم های تشخیص عیب خودرو برای رفع این ، هدف ما بررسی یک روش توسعه نرم اAUTOSARپیشنهاد کرد. با اتخاذ AUTOSARاستاندارد

سازی افزار و پیادهدهندگان برای بررسی پیچیدگی سخت سازی شد و نیازی به توسعهپیاده AUTOSARمحدودیت بود. ماژول ارتباطی و تشخیصی این مطالعه با استفاده از

ان می دهد که نرخ استفاده از ارتباطات را از بین برد. توسعه دهندگان اکنون می توانند روی طراحی ویژگی های نرم افزار برای تشخیص عیب تمرکز کنند. نتایج تجربی نش

CPU 12.97درصد است که به ترتیب 98.70است. میزان موفقیت تشخیص عیب 0.0217است. زمان تشخیص خطا ٪40.68تک هسته ای روش پیشنهادی در مقاله تنها

است. شاخص های تست به طور موثر کاهش می یابد، و نتایج تشخیص خطا دقیق تر است. بررسی این CANیشتر از روش تحلیل سازه و گذرگاه درصد ب 8.98درصد و

 روش جدید توسعه نرم افزار در محصولات الکترونیکی خودرو، کارایی نرم افزار سیستم عیب یابی خودرو را تا حد زیادی بهبود می بخشد.

