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A B S T R A C T  
 

 

In this paper, a new method, based on the estimation of irradiation and temperature values, was proposed 

for Maximum Power Point Tracking (MPPT) in photovoltaic systems. The proposed estimation method 
is based on a new Extended Kalman Particle Filter (EKPF). Given that the basis of the proposed method 

is a particle filter, firstly, the estimation is performed with high accuracy, although the target system has 

severe nonlinearity; secondly, there is no limitation for the probability density functions of the 
measurement and process noise. This method works for Gaussian and non-Gaussian noises. To show the 

estimation accuracy, the proposed method will be compared with the common method based on extended 

Kalman filter (EKF) and both methods will be evaluated due to the root means square error criterion. 
Due to the accurate estimation, MPPT is performed with good performance. For validation, the proposed 

MPPT method was compared with the EKF method and the conventional incremental conductance (InC) 

method. The simulations show that the efficiency is improved from 0.1% to 1% compared to the EKF, 

and from 0.8% to 8.65% compared to the InC method, which shows the performance of the proposed 

MPPT method in noisy environments. 

doi: 10.5829/ije.2023.36.06c.08 
 

 
1. INTRODUCTION1 
 
Increasing demand for electricity and increasing attention 

paid to the environmental impacts of the conventional 

electricity generation, have led the world to focus on 

using renewable energy sources such as fuel cells, wind 

power, and photovoltaic systems. Due to the many 

advantages of photovoltaic (PV) systems, the demand for 

electricity generation by them, both on-grid and off-grid, 

is increasing [1, 2]. The power generated in a PV module 

depends on the amount of irradiation and its temperature. 

Therefore, with changing weather conditions, the output 

power changes [3]. The I-V characteristic of PV modules 

is nonlinear and has a specific point at which the power 

has its maximum value. This point is called the maximum 

power point (MPP). Therefore, an effective method for 

tracking the MPP is necessary to force the photovoltaic 

system to operate at this point in all weather conditions 

[4]. MPPT is one of the main components of photovoltaic 
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systems. In recent years, various techniques and methods 

have been proposed by researchers to track the MPP. 

Methods based on the relationship between MPP voltage 

and open-circuit voltage, or MPP current and short-

circuit current are presented in literature [5, 6]. The 

drawback of this method is that some energy will be lost 

during the short-circuit and the open-circuit. Another 

common method is perturbation and observation (P&O). 

In P&O, first the current and voltage and consequently 

the power (P1) are measured. By creating a perturbation 

in voltage or current in a certain direction, the power will 

be measured again (P2). Then, P2 is compared with P1; if 

P2 is more than P1, then the deviation is in the right 

direction; otherwise, it must be reversed. In this way, the 

maximum power point (Pmpp) and consequently the 

optimal point voltage (Vmpp) will be obtaine [7-9]. P&O-

based techniques have been widely acclaimed due to their 

simplicity and ease of implementation, although these 

techniques are limited to the inherent nature of oscillation 
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and noise in the system. Another common method is hill 

climbing (HC). The basic operation of this method is the 

same as P&O, but instead of perturbing the current or 

voltage, the duty cycle is perturbed to update the PV 

operating point. This algorithm can work based on fixed 

or variable step [10]. Due to the similarity, this method 

has the same advantages and drawbacks as P&O method 

does. Another common method that is widely used is InC. 

In this method, the slope of the P-V characteristic of the 

PV module is used to track the MPP. This method is 

based on the fact that the slope of the P-V characteristic 

is zero at the maximum power point, positive for output 

power less than MPP, and negative for output power 

greater than MPP. The MPP is obtained by deriving the 

output power function, with respect to the voltage, and 

setting it equal to zero. In fact, this method is performed 

by a stepwise comparison of the ratio of conductance 

derivative (dI/dV) with instantaneous conductance (I / V) 

[11, 12]. The InC method overcomes the inherent 

oscillation of the P&O method, although it is difficult to 

be implemented due to the presence of noise in the 

system. The aforementioned common methods are not 

accurate in rapid tracking of irradiation changes. Also, 

the presence of noise in real systems affects the 

performance of these methods. These methods are mainly 

used in combination with other methods [13, 14]. Also, 

different techniques are used to eliminate noise, which 

will result in the complexity of the system as well as the 

slowness of the tracker. 

The attractiveness of the methods based on classical 

control theories and control concepts has prompted 

researchers to use some of these methods to track the 

maximum power point in PV systems. These methods are 

based on the mathematical model of the PV system and 

need the information of its parameters. The most 

common of these methods is the Kalman filter, which is 

widely used to estimate PV systems states. MPP tracking 

using the Kalman filter has been developed by Boutabba 

et al. [15], Motahhir et al. [16] and Farrokhi et al. [17]. 

Because of using Kalman filter, these methods are robust 

against noise. But due to linearization, the estimation 

error is significant. Owing to the severe nonlinearity of 

PV system equations, nonlinear versions of the Kalman 

filter (extended Kalman filter (EKF), Unscented Kalman 

Filter (UKF), etc.) have been developed for MPP 

tracking. Methods based on UKF stated by Abdelsalam 

et al. [18], EKF by Docimo et al. [19], and multiple model 

Kalman filter (MMKF) by Kumar et al. [20] have been 

proposed to estimate the states of PV systems for MPP 

tracking. In linear systems, the Kalman filter is the 

optimal estimator. Nonlinear versions of the Kalman 

filter can be used for nonlinear systems with Gaussian 

noise, but there is no reason for convergence and no proof 

that the resulting estimate is optimal. A method based on 

Bayesian inference is presented by Lefevre et al. [21] for 

MPP tracking, in this method there is no limitation on the 

type of system (linear or nonlinear). Also, this method 

does not make any assumptions for the probability 

density function (PDF) of the process noise and 

measurement noises, and does not need to use 

temperature and irradiation sensors. This method has 

good performance, but since integration is done on 

probability distribution functions; it is very difficult to 

calculate them, so it requires a powerful computer 

processor. Using a hardware that can perform these 

calculations will greatly increase costs. Simon [22] has 

proposed particle filter to overcome the limitations of 

Kalman filter. This estimator has optimal estimation in 

linear and nonlinear models. It has more improved 

performance compared to nonlinear versions of the 

Kalman filter. It makes no assumptions for the PDF of 

the noise, and can perform well for both non-Gaussian 

and Gaussian noises. Considering the mentioned 

characteristics and the presence of non-Gaussian noise in 

the industry, it seems that the estimation of the states of 

PV systems (which have severe nonlinearity) based on 

particle filter is suitable for MPP tracking. 

In this paper, a new MPP tracking method, which is 

based on irradiation and module temperature estimation, 

is proposed. The estimation is done with a new EKPF. 

Since the basis of the proposed estimation method is the 

particle filter, the target system can be nonlinear and 

there is no assumption for the PDF of the noise. Due to 

the use of the combination of Kalman and particle filters, 

the estimation accuracy has been greatly improved 

compared to the common methods based on the Kalman 

filter. This method tracks MPP quickly and has good 

performance in dynamic and static modes. In this 

method, expensive radiation and temperature sensors are 

not used. The structure of this paper is as follows: in 

section 2, the thermal and electrical models of the PV 

module are presented. The state space equations are 

explained in section 3. In section 4, the proposed MPPT 

method is presented. First, EKF and particle filter are 

introduced, then the proposed estimation method is 

described, and subsequently, the new Vmppt calculation 

method that uses the estimated values of temperature and 

irradiation is presented. In section 5, the simulation setup 

is explained. The simulations are done in 

MATLAB/SIMULINK. In section 6, the results are 

discussed, which confirm the effectiveness of the 

proposed method. Finally, in section 7, conclusions are 

presented. 

 

 

2. THE CHARACTERISTICS OF PHOTOVOLTAIC 
MODULES  
 

Photovoltaic cells use semiconductor materials to convert 

sunlight into electricity. The technology is very close to 

solid-state technology, which is used to make transistors 

and diodes. When a piece of p-type silicon, that is lightly 



M. Hooshmand et al. / IJE TRANSACTIONS C: Aspects  Vol. 36 No. 06, (June 2023)   1099-1113                                         1101 

 

doped with boron, and n-type silicon, that is heavily 

doped with phosphorus, are brought together, a p-n 

junction is formed. When a photon is absorbed, an 

electron-hole pair is produced in the p-type region. Due 

to the built-in electric field, which points towards the p-

type region, the electrons drift into the n-type region and 

the hole remains in place. By electrically connecting the 

two terminals of the p-n junction, almost all the electrons 

produced by the photon migrate to the n-type region 

through the connecting wire; thus, completing the circuit. 

Since each photovoltaic cell produces only about 0.5 

volts, it is rarely used alone. By connecting the cells in 

series, a compact form called a module, which has more 

applications and is resistant to harsh weather conditions, 

is formed [23]. The output voltage and current of the 

module depend on such factors as the amount of 

irradiation and the module temperature. So, to analyze 

and study these effects, two electrical and thermal models 

for the module are required. These will be described in 

the next sections. 

 

2. 1. Electrical Model       Among the PV module 

models, the two models of single-diode and two-diode 

have been used in literature [24, 25]. Comparisons 

between single-diode and two-diode models show that 

both models have acceptable accuracy. Although the 

two-diode model is slightly more accurate, it has been 

used less frequently in research due to its high 

complexity. In contrast, due to the fact that the single-

diode model requires fewer calculations and has a smaller 

number of parameters, it has been widely used in research 

articles [26, 27]. This paper uses a single-diode model 

that, while simple, is accurate enough. Figure 1 shows a 

single-diode equivalent circuit of a PV module. In 

general, the resistance of Rs series is very small and the 

parallel resistance of Rp is very large and it is often 

neglected [28]. Due to the presence of diodes in this 

equivalent circuit, current and voltage equations are 

nonlinear. The output current of the module is calculated 

according to Equations (1) to (4). 

pv d pI I I I= − −  (1) 

,( ( ))pv pv n I n nI I K T T G G= + −  (2) 

0 (exp( ) 1)
s

d

s

V R I
I I q

N kTa

+
= −  (3) 

,

0
,

( )

( )
exp( ) 1

sc n I n

oc n v n

s

I K T T
I

V K T T
q

N kTa

+ −
=

+ −
−

 

(4) 

where, Ipv, Id, Ip, and I0 are the photovoltaic current, diode 

current, parallel branch current, and diode saturation 

current, respectively. V and I are the voltage across the  
 

 
Figure 1. The equivalent circuit of the PV module 

 

 

terminal and the module current, respectively.  

T and G are the module temperature (in Kelvin) and 

the amount of irradiation (in kw/m2), respectively. Tn and 

Gn are the nominal values of ambient temperature and 

irradiation, respectively. Voc,n, Isc,n, and Ipv,n are the open-

circuit voltage, short-circuit current, and photovoltaic 

current in standard irradiation and temperature, 

respectively. q is the charge of an electron, k is the 

Boltzmann constant, and parameter a is the diode ideality 

constant. The Ki and Kv constants indicate the 

relationship between the module temperature with the 

short-circuit current and the module temperature with the 

open-circuit voltage, respectively. Based on Equations 

(1) to (4), the I-V and P-V characteristic curves of the 

module are shown in Figure 2. In this figure, the effect of 

temperature and irradiation changes on the I-V and P-V 

curves as well as the MPP are specified. 

 

2. 2. Thermal Model          As shown in Figure 2 (c and 

d), the module temperature is one of the determining 

quantities of the MPP point in photovoltaic systems, so a 

suitable thermal model of photovoltaic modules is 

needed to determine MMP point. Different models are 

presented by Jones and Underwood [29], Mattei et al. 

[30] and Abdelhameed et al. [31] based on energy 

balance, multilayer model, and a model for hot spot 

conditions. In this work a thermal model, which is based 

on the simple method of energy balance, has been used. 

The photovoltaic module is approximated as a lumped 

capacity with a uniform temperature and the irradiation 

exchange between the module and its environment is 

neglected. After the sun radiates on the surface of the 

module, some of it is converted into electrical power by 

photovoltaic cells, and some of it changes the 

temperature of the module. Considering the amount of 

irradiation, the absorption coefficient, and heat exchange 

between the module and the surrounding environment, 

whether in the form of natural or forced convection, the 

final temperature of the module is determined. With these 

assumptions, the heat transfer equations of the PV 

module stated as follows: 

1
( )

sw mconv out
x q P Cq= − −  (5) 
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1 2
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out m m

q A w
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. (a) and (b) I-V and P-V characteristic curves, 

respectively, for various irradiation and T = 298 k, (b) and 

(d) I-V and P-V characteristic curves for various temperature 

and Irr = 1000 w/m2 
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where, x1 and w2 are the module temperature and the 

ambient temperature, respectively. w1 and w3 are the 

irradiation value and wind speed in the area, Vm is the 

module voltage that is determined using MPP tracker, Im 

is the output current of the module, which is multiplied 

by the voltage at which the output power (Pout) is 

obtained. Other parameters are described in Table 1. By 

combining Equations (5) to (7), the final equation of 

temperature changes will be calculated according to the 

climatic conditions of the region and the output power of 

the module as: 

TABLE 1. Parameters of the Thermal Model of the PV Module 

Description Parameter 

lumped thermal capacitance Cm 

Short-wave radiation qsw 

free and forced convection qconv 

module’s surface area As 

Absorptivity Α 

free convection coefficients hfree 

forced convection coefficients hforced 

 
 

1 3

1 1 1 2

3 1 2

1
( (1.31( ) 5.67

3.86 ) ( ) )

s S

m

m m

x A w A x w
C

w x w V I

= − − +

+  − −

 (8) 

 
 

3. STATE SPACE EQUATIONS 
 
The irradiance during a clear day follows a sinusoidal 

pattern. In this work, x2 and x3 states are used to model 

irradiation. Irradiation state equations are presented in 

Equation (9). 

2 3

2

3 2

2 3
(0) 0, (0)

x x

x f x

x x Af

= +

= −

= =







 (9) 

where x2 is irradiation value, f represents the frequency 

of the sine wave and depends on the number of sunny 

hours during the day, and A is the peak of irradiation 

during the day. Cloud cover changes affect the amount of 

solar irradiation on the photovoltaic module and it causes 

the irradiation to deviate from the sinusoidal shape. To 

consider these conditions, process noise Ω will be used in 

the equations, that is added to the irradiation state 

equation, as presented in this equation. By substituting 

Equation (2) to Equation (4) into Equation (1) and 

transferring all the factors to the left of the equation, the 

output current equation will be obtained. Voltage and 

current values are measured with sensors with 

measurement noises vu2 and vy. In Equation (1), by 

substituting G = w1, T = x1, I = y and V = u; in Equation 

(8), by substituting w1 = x2, Im = y and Vm = u, the 

variables are unified. In Equation (8), the voltage has the 

process noise vu1 because the voltage cannot be 

completely controlled, the wind speed and ambient 

temperatures are measured with the noise sensors vw2 and 

vw3, respectively. In this way, the state space equations 

are expressed as follows: 

 ( , , )

( , , , ) 0

X f X U

g X u y





=

=
 (10) 
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where in these equations, the input vector, noise vectors, 

state vector, and the probability distribution function of 

process noise and measurement noise are presented in 

Equation (11). 

2 3 1 2 3

1 1

2 2 3 3
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4. PROPOSED MPPT METHOD 

 

In this section, the proposed maximum power point 

tracking method is presented. The module temperature 

and irradiation are required to track the MPP. These 

values are estimated by the proposed method which is 

very accurate; they are plugged into Equations (1) to (4), 

and then the Vmpp value is calculated through a new 

technique and applied to the converter. Highly accurate 

estimates lead to accurate Vmpp calculations which 

improve efficiency, thereby increasing the daily energy 

generation of the photovoltaic system. In this section, the 

conventional EKF, the standard particle filter, the 

proposed estimation method, and the proposed Vmppt 

calculation technique are presented, respectively. 

 

4. 1. Extended Kalman Filter          The Kalman filter 

uses recursive least squares (RLS) to estimate the states 

of linear systems in noisy environments. This filter uses 

time and measurement updates and it works recursively 

and over time. The effect of noise on the system is 

reduced due to the recursive cycle and finally leads to the 

actual measurement value [22]. The EKF is a non-linear 

version of the Kalman filter and is suitable for nonlinear 

systems. The system is linearized around the point of the 

previous step, and after extracting the equations, the 

linear Kalman filter is applied to it. System equations are 

assumed as Equation (12).  

1 1 1 1
( , , )

( , , )

(0, )

(0, )

k k k k k

k k k k k

k k

k k

x f x u

y h x u
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







− − − −
=

=











 (12) 

where xk ϵ Rn is the state of the system, and yk ϵ Rm is the 

measured output of the system in step k. ω and υ are 

process and measurement noise, respectively; which 

have Gaussian PDF, with zero mean value, and 

covariance matrices Q and R. u and y are the input and 

output of the system, respectively.  f(..) and h(..) are the 

nonlinear functions of the system and measurement, 

respectively. Assuming that the equations of the system 

are in the form of Equation (12), the state’s estimation of 

the system is obtained through the following steps. 

a. Initializing 

0 0

0 0 0 0 0

ˆ ( )
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b. Time update stage 
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c. Measurement update stage 

1
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(15) 

where ˆ
kx−  and 1

ˆ
kx+−  are the estimation of states in k and k-

1, time step, respectively. The “+” and “-” superscripts 

indicate the posteriori and priori estimates, respectively. 

Pk is the error covariance matrix in the time step k, and 

Kk is Kalman gain. 

 

4. 2. Standard Particle Filter        Particle filtering is a 

statistical method for estimating states. This filter is often 

used to estimate the states of systems with severe 

nonlinearity. The particle filter is based on the Bayesian 

state estimator. In fact, the purpose of this estimator is to 

find the PDF of the states assuming measurements y1, y2, 

…, yk, and the initial conditions x0. The Bayesian state 

estimator has two steps: the calculation of the priori and 

posteriori PDF, respectively, and in accordance with 

Equations (16) and (17). 

1 1 1 1 1

1 1 2 1

( | ) ( | ) ( | )

, , ...

k k k k k k k

k k

p x Y p x x p x Y dx

Y y y y

− − − − −

− −

= 

=
 (16) 

1

1

1 2

( | ) ( | )
( | )

( | ) ( | )

, ,...

k k k k

k k

k k k k k

k k

p y x p x Y
p x Y

p y x p x Y dx

Y y y y

−

−

=

=

  (17) 

In these equations, integration is performed on 

probability distribution functions. Normally, the 
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analytical response of these equations is very difficult 

due to the large dimensions of the state space and can 

only be calculated for very specific systems. The 

numerical calculation of these integrals is also a very 

tedious and time-consuming task. The particle filter 

solves this problem; in fact, the particle filter has been 

developed to numerically implement the Bayesian state 

estimator. This filter estimates signals by sampling, these 

samples are called particles [32-34]. The sampling 

process is performed on the system's dynamic equation, 

and the samples are weighted using the measurement 

equation, then based on these samples and their weights, 

the optimal estimate of the stochastic signal is obtained. 

System equations are assumed to be as Equation (10). 

The PDF of the process noise (ω) and the measurement 

noise (υ) are not necessarily Gaussian, and just knowing 

the distribution is enough and the type of distribution is 

not important. With these assumptions, the particle filter 

algorithm estimates the states of the system as follows 

[33, 34]. In these steps, note that p(..) means the 

probability distribution function, not the probability 

value. The index i is the particle number, index k is the 

time step (k = 0,1…), and the superscripts “-” and “+” 

represent the priori and posteriori estimates, respectively. 

1. Assuming that the initial PDF of the state p(x0) is 

known, first the N vector is generated randomly, and 

based on the initial PDF p(x0), these vectors are called 

particles and are denoted by 0, ( 1,..., )ix i N+ = . The N 

parameter is a trade-off between the estimate accuracy 

and the amount of calculations and is determined by the 

designer. 

2. In each time step k = 1, 2, … the following steps will 

be performed. 

a. Using the nonlinear equation of the system (f(..)) and 

the known PDF of the process noise, the time 

propagation is performed to calculate the priori 

particles by Equation (18). 

, 1 1 1 1
( , ) ( 1,..., )

i

k i k k k k
x f x u w i N
− +

− − − −
= =  (18) 

In this equation, each noise vector is generated randomly 

based on a known PDF of wk-1. 

b. Once the measurement in step k is received, the 

relative likelihood qi of each particle conditioned on 

the measurement yk is calculated. This is done by 

evaluating the PDF (p(yk|x-k,i)) based on the 

nonlinear measurement equation (h(..)) and the 

specified PDF of the measurment noise. 

c. The resulting likelihoods are normalized based on the 

following equation. 

1

i

i N

j

j

q
q

q
=

=


 

(19) 

The sum of the total likelihood is now equal to one. 

 
Figure 3. SIR method in solving particle impoverishment 

problem [33] 

 

 

d. Posteriori particles ,k ix+
 are produced based on qi 

likelihoods. This step is called re-sampling. This is 

possible in several ways. The particle 

impoverishment is one of the problems that the 

process of sampling and signal estimation will face 

with if improper methods are used; however, the 

resampling algorithm is used to solve it. Figure 3 

shows the most common SIR algorithm. In this 

method when  
2

1

1
N

eff i thr
i

N q N
=

=   the resampling 

operation is performed in such a way that the weight 

of all the samples is converted to 1/N and then the re-

weighing is performed. In this way, less valuable 

samples are automatically removed after a few steps. 

e. We now have a set of new particles ,k ix+
 distributed 

according to p(xk|yk), so we can calculate any 

statistical criterion of this PDF. We are often only 

interested in calculating the mean and the covariance. 

 
4. 3. Proposed Estimation Method          To improve 

the performance of the particle filter, one of the proposed 

methods is to combine it with non-linear versions of the 

Kalman filter (EKF, UKF or CKF). In the proposed 

estimation method, the improved particle filter is 

combined with EKF. In the proposed method, particle 

classification is used in the resampling step. This makes 

the proposed combined filter very accurate in estimating 

system states, even if the system has severe nonlinearity. 

The proposed method in this paper is named EKPF in 

short. In this approach, each particle is updated by the 

EKF at the measurement time, and then resampling is 

performed using the measurement. In the proposed 

method, there is no assumption for the probability density 

functions. This method works correctly for Gaussian and 

Monte Carlo Samples

P (xk-1|Yk-1)

Importance Weights using 

likelihood function:  P (yk| xk)

Resample Particles:

N Particles { xk,i ,1/N}N
i=1

q     p(yk| xk,i)

N Particles { xk,i ,1/N}i=1
N 
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non-Gaussian noises. The steps of this method are as 

follows; 

1. Equations of system and measurement are assumed 

according to Equation (10). Independent white noises 

ω𝒌 and 𝒗𝒌 are considered with specific PDF. The 

covariance matrices of the noises are defined as 

Equation (20). 

1 2 3

2

( , , , )

( , )

u w w

u y

Q diag

R diag

   

 


=

=
 (20) 

2. It is assumed that the initial PDF of system states is 

p(x0). Based on this PDF, N number of primary 

particles are produced randomly. For i = 1, ..., N, these 

particles are named 0,ix+
 and their covariance is named 

0, 0iP P+ += . The number of particles is determined based 

on the trade-off between the calculations amount and 

the accuracy of the estimation. 

3. The following steps are performed for k = 1, 2, … . 

a. The time propagation step is performed using the 

known PDF of the process noise and the known 

process equation, to obtain a priori particles 0,ix+
 and 

covariances 
,k iP− . 
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 (21) 

where 
1

i

k −
 noise vector is generated randomly based on 

the known PDF of ω𝒌−𝟏, and L and F are Jacobin 

matrices. 

b. The priori particles and their covariance are updated 

and their posteriori values are obtained by Equation 

(22) 

,
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 (22) 

where H and M are Jacobian matrices, and K is the 

Kalman gain for i’th particle. yk is found at the reference 

point by solving the output Equation (10).  

 

c. The relative likelihood qi of each posteriori particle 

,k ix+  is calculated under the condition of measurement 

yk. This is done by evaluating the PDF 
,( | )k k ip y x+ ,  

based on the nonlinear measurement equation g and 

the PDF of the measurement noises. 

d. The relative likelihoods obtained from the previous 

step are scaled by Equation (19). Now the sum of all 

of them equals to one. 

e. Based on the calculated likelihoods and the following 

resampling method, the posterior particles 
,k ix+ and the 

covariance 
,k iP+ will be refined. 

The adopted resampling algorithm is that the particles 

are divided into three classes based on their weight. The 

values of the maximum and minimum thresholds (qtrmax 

and qtrmin), i. e. the boundary between the classes, are 

defined. The samples will be classified according to 

Equation (23). 

, min

1 1 min , max

, min

0
k i thr

k k thr k i thr

k i thr

q q

x x q q q

fission q q

+ +



=  









 (23) 

And then, if Neff≤Nthr, the resampling step is done. It is 

assumed that the P particles are in the first class. K is the 

number of particles in the second class and the N-P-K 

particles are in the third class. Class 1 particles are 

removed, class 2 particles remain unchanged, and class 3 

particles are divided into several particles according to 

their weight and Equation (24) 

,
[ ( )] 1,2,...

i k i
m q N P k i N P K= − − = − −  (24) 

where m is the number of particles produced based on 

weight qk,i and [..] is the integer function. In this 

algorithm, the breaking method is used, and to calculate 

the weight of the broken particles, relation (25) will be 

used. 

, 1, ,
( | )

k i k i k k i
q q p y x

 −
=   (25) 

Figure 4 shows the particle classification process. 

 

 

 
Figure 4. Particle weight classification process 
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f. We now have a set of new particles
,k ix+  distributed 

according to p(xk|yk), so we can calculate any 

statistical criterion of this PDF. Figure 5 shows the 

general algorithm of the proposed estimation method. 

 
4. 4. Proposed Vmppt Calculation Method      As 

shown in Figure 2, the PV module has different P-V 

characteristics for different amounts of irradiation and 

temperature, each with a different Vmppt value. Therefore, 

the irradiation and module temperature are two important 

quantities in determining the MPP. After each 

measurement, the proposed estimation method estimates 

the irradiation and module temperature. The tracker uses 

these values as input and determines the Vmppt based on 

the P-V equations. This is done by deriving the power 

equation, with respect to the voltage, and setting it to 

zero. By multiplying the two sides of Equation (1) by V, 

we have: 

0
( (exp( ) 1) ))s s

pv

s p

V R I V R I
V I V I I q

N kTa R

+ +
 =  − − −  (26) 

 

 

 
Figure 5. The proposed estimation algorithm 

By replacing /I P V=  we have: 

0

/
( (exp( ) 1)

/
) 0 ( , ) 0

s

pv

s

s

p

V R P V
P V I I q

N kTa

V R P V
g P V

R

+
− − −

+
− =  =

 (27) 

By deriving P, with respect to V, we have: 

1
( ) 0

dP g g

dV V P

− 
= − =

 
 (28) 

where V and P are inseparable. This equation is solved 

by numerical methods in a certain voltage range. In this 

work, the Newton-Raphson method is used to solve the 

equation, because this method converges rapidly. The 

resulting voltage is immediately applied to the DC/ DC 

converter to achieve maximum power. The voltage is 

kept constant until the next measurement is obtained. In 

this method, no data is stored, so no memory is required 

to store the data. Storing more data is a burden over any 

numerical solution. Therefore, this method is superior to 

the methods based on look-up table. 

 

 

5. SIMULATION SETUP 

 

The configuration of the simulation setup is shown in 

Figure 6. Climatic conditions (wind, sunlight, etc.) are 

applied to the module by the environment. The values of 

wind speed, ambient temperature, voltage and current are 

measured by sensors, then each of these quantities, which 

has an independent noise, are applied to the estimator. 

Estimation by the proposed method determines the 

amount of irradiation and module temperature. These 

values are applied as input to the MPP Tracker to 

determine the optimal point. No assumptions are made 

for noise distribution  in the proposed method, but to be 

able to compare the proposed method with the EKF 

method, we assume that the noise is Gaussian. All 

variance values of noise, as well as initial values of  

 

 

 
Figure 6. Simulation setup configuration 
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covariance and system states, are similar to the values 

reported in the literature [19].  

It is assumed that all noises are uncorrelated and have 

zero mean value, although there is no need for this, and 

correlated noises with a non-zero mean value can be used 

with small changes in the equations. All values of noise 

variance are presented in Table 2. The initial values of 

the states and error covariances are presented in 

Equations (29) and (30), which are the expected values at 

the beginning of the PV module operation. 

2

0|0 0
ˆ (0), 0, (1000 )

T

x w W m f=     (29) 

2 2 2 2

0|0 2
(3 ) , (50 ) , (0.02 )

W rad
P diag k W m

sm
=

 
 
 

 (30) 

A 250-watt module is used for simulation. All values of 

the parameters of the electric and thermal models are 

shown in Table 3. Environmental inputs for simulation, 

including irradiation, wind speed, and ambient 

temperature, have been obtained from the National Wind 

Technology Center (NWTC, 2016). Three sets of M2 

tower data in Boulder, Colorado have been used. Dates 

are selected in a way that different weather conditions 

could be applied to the system. A day with a clear sky 

(May 28, 2014), a partly cloudy day (May 13, 2014), and 

a severely cloudy day (May 11, 2014) have been chosen. 

The values of irradiation, ambient temperature, and wind 

speed on the dates mentioned are shown in Figure 7. 

These values are used in Equations (2) and (8) to 

calculate the actual values of radiation and module 

temperature. 

 

 

TABLE 2. Noise variance values 

Value Variance 

(0.1 K)2 ∑w2 
(1m/s)2 ∑w3 
(0.1V)2 ∑u1 

(0.01V)2 ∑u2 
(0.05A)2 ∑y 

(1W/m2s)2 ∑Ω 
 
 

TABLE 3. System Parameters 

Value Parameter 

0.8 (m2) As 
4580 (J/K) Cm 

8.02 (A) Ipv,n 

0.0032 (A/K) Ki 

298 (k) Tn 

1000 (W/m2) Gn 

8.21 (A) Isc,n 

1.60217646*10-19 (C) q 

32.9 (V) Voc,n 

-0.1230 (V/K) Kv 

1.3 a 

54 Ns 

1.3806503*10-23 (J/K) k 

0.221 (Ω) Rs 

415.405 (Ω) Rp 

0.7 α 

 

 

 
Figure7. Values of wind speed, irradiation, and ambient temperature on May 28, May 13, and May 11 2014 
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Given that the data is measured for every minute, the 

simulation step will be 60 seconds. The system's 

continuous equations are discretized by the Euler method 

with a time step of T=60 s.  The number of particles in 

the simulation is considered to be N=100. 
 

 

6. SIMULATION RESULTS 

 

In order to confirm the accuracy of the estimated values, 

the proposed estimation method was compared with the 

common estimation method based on EKF. Both 

methods are simulated in similar atmospheric conditions. 

Gaussian noise with variance values presented in Table 2 

was applied to both methods. The root means square error 

(RMSE) criterion will be used to compare the estimation 

error. Since the irradiation and module temperature are 

accurately estimated, the MPP is tracked with good 

accuracy in the proposed method. To verify this, the 

proposed method is compared with the EKF-based 

method and the common traditional method of InC in 

terms of the generated power. Also, these methods were 

compared in terms of efficiency, which can be calculated 

from Equation (31) 

, ,

, ,

meas j meas j j
j

mpp

MPP k MPP k k
k

i v t

i v t


 

=
 

 (31) 

where imeas and vmeas are the current and voltage of the PV  

module during the j’th time interval (∆tj), respectively. 

iMPP and vMPP are the current and voltage of the MPP 

during the k’th time interval (∆tk), respectively. The 

methods were compared in different weather conditions, 

a day with a clear sky, a partly cloudy day, and a severely 

cloudy day. 

 

6. 1. Clear Skies           The data for this condition is 

shown in Figure 7 for 28 May 2014. From top to bottom, 

the amount of radiation, ambient temperature and wind 

speed during the day are shown in this figure, 

respectively. As seen in the figure, the irradiation follows 

a sinusoidal trend. Figure 8 shows the performance of 

irradiation and temperature estimation with the proposed 

estimation method and EKF. As can be seen in Figures 8 

(a and b), the temperature estimation error in the 

proposed method (except for the case of initial 

conditions) is less than 0.2K, while it is about 5K in EKF. 

The RMSE in the proposed method is 0.0053, which, 

compared to the number 0.04 for the EKF method, 

indicates the appropriate accuracy of the proposed 

method in estimating the temperature. In Figures 8 (c and 

d), the real value of irradiation is compared with its 

estimated value by the proposed and EKF methods. 

Estimation errors in Figure 8(d) indicate that the 

maximum estimation error in the proposed method was 

5W/m2, while in the EKF method it is about 30 w/m2. The 

RMSE value in the proposed method is 0.089, which 

indicates the accuracy of the proposed estimator, 

compared to the 0.258. 

 

 

  
(a) (c) 

  
(b) (d) 

Figure 8. The comparison of actual and estimated values (Temperature and Irradiation) using the EKF and the proposed method in 

the first case (clear skies conditions- for May 28, 2014) 
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Figure 9 shows the generated maximum power of the PV 

module using the proposed method, the EKF-based 

method, and the InC method on a day with a clear sky in 

2014. The results were compared with the real maximum 

power produced by the actual irradiation and module 

temperature. The error obtained from the three methods 

with the true power is also presented in this figure. The 

results show that in the proposed method, the maximum 

error is 0.1 watts, and for the EKF method, this value is 

increased to 1 watt and in the InC method it is about 6 

watts. The proposed method has an efficiency of 99.99%, 

which is about 0.1% higher than the EKF method, and 

about 1% higher than the InC method. As a result, the 

proposed method produces 5.5 kJ more than the EKF 

method and about 50 kJ more than the InC method per 

day. 

 

6. 2. The Partly Cloudy Sky          Figure 7 shows the 

data for these conditions as of May 13, 2014. From top to 

bottom, the amount of radiation, ambient temperature 

and wind speed during the day are shown in this figure, 

respectively. Figure 10 shows a comparison of irradiation 

and temperature estimation performance using the 

proposed and EKF methods. The error in estimating the 

temperature in the proposed method (except for the case 

of initial conditions) in the semi-cloudy conditions is 

below 0.5 K, while it is about 4.5K in the EKF. The value 

of RMSE in the proposed method is 0.0027, which 

indicates the appropriate accuracy of the proposed 

estimator, compared to the number 0.029 for the EKF 

method. Figure 10 (c and d) shows the comparison of the 

real and estimated values of irradiation by the proposed 

and the EKF methods. Errors indicate that the maximum 

estimate error in the proposed method is 2.5 w/m2, while 

it is about 28 w/m2 in the EKF method. The value of 

RMSE in the proposed method is 0.065 and this value in 

EKF is 0.3. 

Figure 11 shows the output power of the PV module 

using the proposed the EKF-based and the InC methods. 

The results were compared with the real maximum power 

generated by the actual irradiation and module 

temperature. The errors and their deviation from the true 

power are also presented in this figure. The results show 

that in the proposed method, the maximum output power 

error is less than 0.05 watts, and for the EKF method, this 

value is increased to 0.3 and in the InC method it is about 

80 watts. The average efficiency of the proposed method 

is about 99.97, which is about 1.5% more than the EKF 

and about 7% more than the conventional InC method. 

This means that the proposed method generates about 33 

kJ more than the EKF method and about 198 kJ more than 

the InC method daily. 
 

6. 3. Severely Cloudy Skies       The data for this 

condition is shown in Figure 7 for May 11, 2014. From 

top to bottom, the amount of radiation, ambient 

temperature and wind speed during the day are shown in 

this figure, respectively. Figure 12 shows a comparison 

of irradiation and temperature estimation performance 

with both the proposed and EKF methods. The maximum 

temperature estimation error in the proposed method 

(except for the case of initial conditions) is about 0.4 K, 

 
 

  
 

(a) (c) (e) 

   
(b) (d) (f) 

Figure 9. The comparison of the power generated by the PV module using the proposed method (a and b), EKF-based method (c 

and d), and InC method (e and f) in clear sky conditions 
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(a) (c) 

  
(b) (d) 

Figure 10. The comparison of actual and estimated values (Temperature and Irradiation) using the EKF and the proposed method 

in the second case (the partly cloudy sky conditions- for May 13, 2014) 

 

 

   
(a) (c) (e) 

   
(b) (d) (f) 

Figure 11. The comparison of the power generated by the PV module using the proposed method, InC method, and EKF-based 

method in partly cloudy conditions 

 

 

while this value in the EKF method is about 3K. The 

RMSE in the proposed method is 0.006, which shows a 

very good accuracy of the proposed method in these 

weather conditions, compared to the 0.0179 for the EKF. 

Figure 12 (c and d) shows the comparison of the real and 

estimated values of irradiation by the proposed method 

and the EKF method. The maximum estimate error in the 

proposed method is 2w/m2 and for EKF is about 40 w/m2 

approximately. The value of RMSE in both EKF and 

proposed estimation methods is 0.063 and 0.32, 

respectively, which indicates the appropriate accuracy of 

the proposed method. Figure 13 shows the output power 

of the PV module using the proposed method, the EKF-

based method and the InC method. The results were 

compared with the real maximum power generated by the 

actual irradiation and module temperature. The results 

show that the error is 0.05 watts for the proposed method, 

22 watts for InC, and approximately 0.3 watts for EKF. 

The proposed method has an efficiency of 99.96%, which 

is 0.15% more than the EKF method and 8.65% more 

than the InC method. This means that the proposed 

method produces about 5.1 kJ more than EKF and about 

294 kJ more than InC per day. Table 4 presents the 

RMSE values for the proposed method and EKF, and the 

efficiency and daily energy production values for all 

methods (Proposed, EKF-based and InC). 



 

 

 
 

(a) (c) 

  

(b) (d) 

Figure 12. The comparison of actual and estimated values (Temperature and Irradiation) using the EKF method and the proposed 

method in the third case (the severely cloudy skies conditions- for May 11, 2014) 

 

 

   
(a) (c) (e) 

   
(b) (d) (f) 

Figure 13. The comparison of the power generated by the PV module using the proposed method, InC method, and EKF-based 

method in severely cloudy conditions 
 

 
TABLE 4. The Comparison of RMSE Value and Efficiency 

Value in the Proposed Method, EKF method and InC Method 

RMSE Value Estimate 

Method Condition 3 Condition 2 Condition 1 

Irr T Irr T Irr T  

0.32 0.0183 0.3 0.029 0.258 0.04 EKF 

0.063 0.0061 0.065 0.0027 0.089 0.0053 Proposed 

Efficiency MPPT 

Method Condition 3 Condition 2 Condition 1 

91.31 94 98.9 InC 

99.81 98.9 99.89 EKF 

99.96 99.97 99.99 Proposed 
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7. CONCLUSIONS 

 

In this paper, a new method was proposed using a 

combination of particle and Kalman filters to estimate the 

irradiation and temperature of a photovoltaic module.  

Using the estimated values, a new method was applied to 

the system to track the MPP, which used the power 

equation derivative, and due to the fact that this method 

does not require data storage, less memory is used. For 

evaluation, the proposed method was simulated in three 

different climatic conditions and compared with the EKF 

estimation method in terms of estimation accuracy. Also, 

in these three climatic conditions, the proposed method 

was compared with EKF and traditional and common InC 

methods in terms of accuracy and efficiency of MPPT 

and daily energy generation. The results showed that, 

firstly, the estimation accuracy of the proposed method is 

higher than EKF in all the three climatic conditions, and 

secondly, the proposed method is better than the other 

two methods in terms of tracking accuracy and 

efficiency. So, the proposed method is more efficient 

than EKF method with a rate of 0.1 to 1% and also more 

efficient than InC method with a rate of 0.8 to 8.65%. In 

general, it seems that due to the presence of noise in the 

environment and the measurement sensors, estimation-

based methods for tracking perform better than 

traditional and tracker-based methods and can be a 

promising candidate for new PV systems. 
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Persian Abstract 

 چکیده 

  ی شنهادیپ  نیشده است. روش تخم  شنهادیتابش و دما پ  ر یمقاد  ن یبر اساس تخم  ک یفتوولتائ  یهاستم ی( در سMPPTنقطه حداکثر توان )  یابیرد  ی برا  یدیمقاله، روش جد  ن یدر ا

  شود،ی انجام م  ییبا دقت بالا  نیتخم  لاًاست، او  ایهذر  لتر یف  یشنهادیروش پ   یمبنا  نکه ی( است. با توجه به اEKPF)  افتهیکالمن توسعهو    ایه ذر  هایلتریفترکیب    بر اساس

  ی گاوس  ریو غ  یگاوس  یزهاینو  یروش برا  نیوجود ندارد. ا  ندیفرآ  زیو نو  یریگاحتمال اندازه  یتوابع چگال  یبرا  یتیمحدود  اًیاست، ثان  ا غیر خطیدی هدف شد  ستمیاگرچه س

مربعات  نیانگیم شهیر اریشده و هر دو روش با مع  سهی( مقاEKF) افتهیکالمن توسعه  لتریبر ف یمبتن جیرا با روش یشنهادیروش پ ن،ینشان دادن دقت تخم یکند. برا یکار م

  سه یمقا  InCرایج  و روش    EKFبا روش    یشنهادیروش پ  ،یاعتبارسنج  یشود. برا  یانجام م  یبا عملکرد خوب  MPPT  ق،یخواهند شد. با توجه به برآورد دق  یابیخطا ارز

است که عملکرد روش    افته یبهبود    InCبا روش    سهمقای  درصد در  8.65  تا   0.8و از    EKFبا    سهمقای  در   درصد  1  تا   0.1دهد که راندمان از    ی ها نشان م  ی ساز  هی. شبشودیم

MPPT  دهد. ینشان مبا نویز بالا  یها طی را در مح یشنهادیپ 
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