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A B S T R A C T  

 

Various mechanical and geometrical parameters have different effects on the isolation system's 
performance. Thus, a sensitivity study of the isolated structures' behavior is an essential matter. In this 

regard, the isolation systems should be designed using optimization approaches to consider the effects 

of the different factors. In this study, the optimal design of the lead rubber bearing (LRB) seismic 
isolation was conducted by considering mass irregularity and near-fault seismic excitation effects. Also, 

sensitivity analysis of the behavior of the considered isolated buildings was implemented concerning 

the mechanical parameters of the LRB system. A nonlinear time history dynamic analysis was used 
here, and the design optimization of the LRB isolator was programmed using the newly introduced 

grasshopper optimization algorithm (GOA). The main purpose was to investigate the ability of the 

GOA to optimize the design parameters of the LRB-isolated frames. The results proved the desirable 

ability of the GOA to solve optimal design problems for isolation systems. Also, the sensitivity analysis 

of the seismic behavior of LRB base-isolated structures showed that the yield base shear index had the 

most important effects. Also, the mass irregularity parameter showed a negligible influence. 

doi: 10.5829/ije.2023.36.03c.20 
 

 
1. INTRODUCTION1 
 
During ground motions, structures vibrate, and if the 

structures have weak energy dissipation, they will be 

damaged, and in more severe cases, the structures will be 

collapsed. In recent decades, extensive studies have been 

conducted on developing structural control systems for 

the robust design of structures under seismic excitations 

[1-5]. In structural control systems, the mechanism of 

control devices has a significant role in the energy 

dissipation caused by earthquakes. A seismic isolation 

system with suitable force-displacement hysteresis 

properties can have the desired characteristics, such as 

optimum flexibility, high damping, and reduction of 

horizontal earthquake forces [6]. The primary purpose of 

the seismic isolation method is to prevent the transfer of 

horizontal ground motions and seismic forces to the 

superstructure. The reduction of transmitted seismic 
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force to the superstructure is achieved by increasing the 

natural period of the structure and energy dissipation at 

the isolation level [7]. One of the most common types of 

isolation systems is the lead rubber bearing (LRB). 

The seismic behavior of isolated structures is 

affected by different parameters. Various studies have 

been conducted to evaluate the behavior of the isolation 

system. In some studies, the impact of the type and 

mechanical parameters of the isolator has been assessed 

[8, 9]. Also, the effect of soil interaction on the isolation 

system [10, 11], isolation in tall buildings [12], 

evaluation of fragility curves in system isolation [13], 

reliability analysis [14], and reliability-based design [15] 

in isolated systems, semi-active isolation systems [16], 

hybrid control strategies for the isolated structures [17, 

18], optimization of the shape memory alloy based 

friction pendulum system [19], and the cost benefits of 

isolations in the seismic design of structures [20] have 
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been studied. Shaking table experiments have been 

carried out on base-isolated building systems [21]. 

Recently, the Telescopic Column (TC) system was 

proposed as a novel rocking-isolation method by 

Farsangi et al. [22]. 

Also, some studies showed that the performance of 

the isolation systems can be affected by factors such as 

geometric conditions, the irregularity of the structure, 

and seismic excitation characteristics. The damage 

caused by earthquakes depends on many factors, such as 

failure mechanism, site location, soil type, and 

earthquake record characteristics, including frequency 

content, duration, and amplitude [23]. Some researchers 

have studied the effects of ground motion [24], the 

impact of horizontal and vertical components [25], and 

the effect of earthquake frequency content [26] on the 

performance of isolated systems. The effects of near-fault 

and far-fault earthquakes have also been considered in 

some other studies [27-29]. In several studies, the effects 

of asymmetry in structure [30], the presence of soft 

stories [31], and eccentricity [32] on isolated structures 

have been studied. An isolated building with LRB 

isolators was analyzed using a series of real near-fault 

earthquake ground accelerations [33]. 

Determining the mechanical parameters of isolator 

devices to achieve efficient performance for the isolation 

system is a complex process. However, studies have 

shown that the behavior of these systems can be 

influenced by various conditions. Therefore, the design 

of isolation systems is defined in the framework of design 

optimization problems. One of the efficient methods in 

solving engineering optimization problems is meta-

heuristic algorithms [34, 35]. So far, several 

metaheuristic algorithms have been introduced, such as 

charged system search (CSS), colliding bodies 

optimization (CBO), vibrating particle system (VPS) 

[34], ant colony optimization (ACO) [36], grasshopper 

optimization algorithm (GOA) [37], and so on. Recently, 

the particle swarm optimization algorithm was used to 

optimize the magneto-rheological (MR) damper 

parameters [38]. 

The literature review proved that more investigation 

is necessary for the optimization of the base isolation 

design process, especially when using novel optimization 

algorithms. In this study, the optimum design of a seismic 

isolation system with LRB isolators is solved using the 

newly introduced method of GOA while considering the 

mass irregularity and near-fault earthquake effects. The 

main purpose here is to evaluate the GOA method for 

optimizing the design of the LRB-isolated system. 

 

 

2. MATERIALS AND METHODS 
 
2. 1. Seismic Isolation Systems             Rubber supports 

can provide the flexibility and deformation required for 

vibration isolation. If these supports are combined with a 

lead core to dissipate input energy, the necessary 

damping is also offered for the system. The shear 

deformation of the lead core in rubber supports can be 

controlled by using steel plates in the system. So, the lead 

core deforms against shear forces and causes a bilinear 

hysteresis behavior in the device [39]. Also, the rubber 

part of this isolation system is responsible for providing 

the restoration force (Figure 1 (a)).  
In practice, all LRB isolation systems are simulated 

with a bilinear hysteresis model based on the three 

parameters of elastic stiffness (𝐾1), post-yield stiffness 

(𝐾2), and specified yield strength (𝑄𝑦), as shown in 

Figure 1 (b). The post-yield stiffness is obtained from the 

desired period of the structural system. For lead rubber 

bearing (LRB) and frictional pendulum systems (FPS), 

elastic stiffness is a coefficient of post-yield stiffness 

[28]. 

Initially, a time period is selected for the isolated 

structure (𝑇2) at the design displacement level, usually 

between 2 and 3 seconds. Then the post-yield stiffness of 

the isolated system for the selected period can be 

calculated using Equation (1): 

(1) 𝐾2 = 𝑀 × (
2𝜋

𝑇2
)
2
  

In this relationship, M is the total mass of the whole 

structure isolated at the base. Also, the yield shear 

strength at the isolation level (𝑄𝑦) can be defined using 

Equation (2): 

(2) 𝑄𝑦 = 𝛼𝑀𝑔  

 

 

 
(a) 

 
(b) 

Figure 1. (a) Hysteretic loops parameters [40]; and (b) A 

bilinear behavioral model the LRB isolation used in this 

study [28] 

Force 

Displacement 
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In this relationship, α is the yield shear coefficient. 

Assuming a value between 0 and 1, the effective shear 

force on the structure can be determined. In the bilinear 

behavioral model, the value of the elastic stiffness of the 

system (𝐾1) can be determined by selecting the yield 

deformation component (𝑋𝑦) as the elastic behavior limit. 

(3) 𝐾1 =
𝑄𝑦

𝑋𝑦
  

Therefore, the ratio of initial stiffness to post-yield 

stiffness is defined as the parameter 𝛼𝑘 in relation (4): 

(4) 𝛼𝑘 =
𝐾1

𝐾2
  

Also, the damping of the isolation system (𝑐𝑏) in terms of 

the effective damping ratio (𝜉𝑏), which represents the 

dissipated energy, is equal to Equation (5): 

(5) 𝑐𝑏 = 2𝜉𝑏√𝐾2 ×𝑀  

 

2. 2. Nonlinear Dynamic Analysis            The dynamic 

response of a structural system beyond its linear elastic 

range can usually not be calculated by an analytical 

solution. Even if the excitation changes are described by 

a simple function. Therefore, using numerical methods in 

the analysis of nonlinear systems is necessary. The 

Newmark method with a modified Newton-Raphson 

iteration approach is generally used for nonlinear 

dynamic equation solutions [41]. 

The dynamic equation of a structure with nonlinear 

behavior is written as Equation (6): 

𝑀𝑈̈(𝑡) + 𝐶𝑈̇(𝑡) + 𝐹𝑆(𝑡) = 𝑃(𝑡)  (6) 

where t is the time; U, 𝑈̇ and 𝑈̈, are displacements, 

velocities, and acceleration vectors relative to the ground, 

respectively; M is the mass matrix; C is the damping 

matrix; 𝐹𝑆 is the vector of resisting forces, which is a 

function of displacement and P(t) is the applied force, 

which for the seismic case is given by ground 

acceleration time history. Also, the initial condition is 

𝑈(0) = 𝑈0 and 𝑈̇(0) = 𝑈̇0. According to the equilibrium 

conditions in each time interval, the equation of motion 

during the time step 𝑡𝑖+1 can be written as follows: 

𝑀𝑈̈𝑖+1 + 𝐶𝑈̇𝑖+1 + 𝐹𝑠𝑖+1 = 𝑃𝑖+1  (7) 

In this paper, the constant average acceleration 

method with Newton–Raphson iterations has been used 

to analyze the nonlinear MDOF structures. At first, the 

initial state of the structural system is determined (𝐾𝑇0 

and 𝐹𝑠0). Then, also, the initial acceleration is calculated: 

𝑈̈0 = 𝑀
−1(𝑃0 − 𝐶𝑈̇0 − 𝐹𝑠0)  (8) 

then for each time step: 

𝑃̅𝑖+1 = 𝑃𝑖+1 + 𝑎1𝑈𝑖 + 𝑎2𝑈̇𝑖 + 𝑎3𝑈̈𝑖     ,   𝑖 = 0.1.2.…  (9) 

where: 

𝑎1 = (
1

𝛽(∆𝑡)2
)𝑀 + (

𝛾

𝛽∆𝑡
) 𝐶  (10) 

𝑎2 = (
1

𝛽∆𝑡
)𝑀 + (

𝛾

𝛽
− 1)𝐶  (11) 

𝑎3 = (
1

2𝛽
− 1)𝑀 + ∆𝑡 (

𝛾

2𝛽
− 1)𝐶  (12) 

If the resisting forces are not equal to the applied force, a 

residual force vector is defined as: 

𝑅̅𝑖+1 = 𝑃̅𝑖+1 − (𝐹𝑠)𝑖+1 − 𝑎1𝑈𝑖+1  (13) 

By using the Newton–Raphson iteration method, the 

additional displacement due to this residual force is 

determined by solving: 

∆𝑈 = (𝐾𝑇)𝑖+1
−1
× 𝑅̅𝑖+1  (14) 

where 𝐾𝑇 is the tangent stiffness that can be considered 

as follows:   

(𝐾𝑇)𝑖+1 = (𝐾𝑇)𝑖+1 + 𝑎1  (15) 

The responses of a nonlinear structure can be obtained as 

follows: 

𝑈𝑖+1 = 𝑈𝑖 + ∆𝑈  (16) 

𝑈̇𝑖+1 = (
𝛾

𝛽∆𝑡
) ∆𝑈 + (1 −

𝛾

𝛽
) 𝑈̇𝑖 − ∆𝑡 (1 −

𝛾

2𝛽
) 𝑈̈𝑖  (17) 

𝑈̈𝑖+1 = (
1

𝛽(∆𝑡)2
) ∆𝑈 − (

1

𝛽∆𝑡
) 𝑈̇𝑖 + (1 −

1

2𝛽
) 𝑈̈𝑖  (18) 

where 𝛾 and 𝛿 are Newmark parameters, in this study, 

𝛾 = 0.5 and 𝛿 = 0.25 have been used for nonlinear 

analysis of the structure. 

 

2. 3. Grasshopper Optimization Algorithm         
Optimization methods in their classical form use the 

derivation information of the objective function to find 

the optimal solution. These methods fall into the locale 

optimum points for complex problems, and cannot be 

used for underivable functions. Another type of 

optimization methods are stochastic methods, such as 

meta-heuristic algorithms. These methods are generally 

population-based algorithms inspired by nature. One of 

the evolutionary algorithms is the grasshopper 

optimization algorithm (GOA) which is inspired by the 

grasshopper lifecycle [37]. Most of the nature-inspired 

algorithms divide the search area into exploration and 

exploitation parts. In the exploration step, search agents 

are driven by random movements, while, in the 

exploitation phase, they tend to move locally around their 

place. 

The theoretical model used to simulate grasshoppers' 

behavior was initially in the form of Equation (19): 

𝑋𝑖 = 𝑆𝑖 + 𝐺𝑖 + 𝐴𝑖  (19) 
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where 𝑋𝑖 indicates the position of the grasshopper i, 𝑆𝑖 is 

the social interaction, 𝐺𝑖 is the force of gravity applied to 

the grasshopper i, and 𝐴𝑖 represents the direction of the 

wind. The value of 𝑆𝑖, that is, the social interaction for 

grasshopper i, is calculated by Equation (20): 

𝑆𝑖 = ∑ 𝑆(𝑑𝑖𝑗)𝑑𝑖𝑗̂
𝑁
𝑗=1   (20) 

where 𝑑𝑖𝑗  indicates the distance between grasshoppers i 

and j and is calculated as Equation (21): 

𝑑𝑖𝑗 = |𝑥𝑖 − 𝑥𝑗|  (21) 

as shown in Equation (20), 𝑑𝑖𝑗̂ is a unit vector from the 

ith to the jth grasshopper. S is also a function for defining 

social force. The function S, which defines a social force, 

is calculated as in Equation (22): 

𝑆(𝑟) = 𝑓𝑒
−𝑟

𝐼 − 𝑒−𝑟  (22) 

where f represents the intensity of gravity, and I 

represents the length of the gravity scale. Parameters I 

and f significantly change the comfort zone, attraction, 

and repulsion. 

Research has shown that the initial grasshopper 

motion relationship cannot be used in swarm simulation 

and optimization algorithms since this relationship 

prevents exploration and exploitation in the search space 

around a solution. The model is used for outdoor 

crowding. Therefore, Equation (23) has been used and 

can simulate the interaction between the grasshoppers in 

the swarm. 

𝑥𝑖
𝑑 = 𝑐 (∑ 𝑐

𝑢𝑏𝑑−𝑙𝑏𝑑

2
𝑠(|𝑥𝑗

𝑑 − 𝑥𝑖
𝑑|)

𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗

𝑁
𝑗=1 ) + 𝑇𝑑̂  (23) 

Where 𝑢𝑏𝑑 is the upper bound in the d-th dimension, and 

𝑙𝑏𝑑 is the lower bound in the d-th dimension. 𝑇𝑑̂  is the 

value of the d-th dimension in the target (the best solution 

ever seen), and c is a decreasing constant to reduce the 

area of comfort, repulsion, and attraction. 

In Equation (23), S is obtained from Equation (19), 

and the parameters of gravity (G) and wind direction (A) 

are not considered. Based on this equation, the next 

position of a grasshopper can be defined using its current 

position, the target position, and the positions of all other 

grasshoppers. To maintain a balance between exploration 

and exploitation, parameter c needs to decrease with 

increasing repetition times during the algorithm. The 

coefficient c reduces the comfort zone in proportion to 

the number of repetitions (Equation (24)): 

𝑐 = 𝑐𝑚𝑎𝑥 − 𝑖
𝐶𝑚𝑎𝑥−𝐶𝑚𝑖𝑛

𝑙
  (24) 

where 𝐶𝑚𝑎𝑥 is the maximum value, 𝐶𝑚𝑖𝑛 is the minimum 

value, i represents the current iteration number, and l is 

the maximum number of algorithm iterations. In the 

simulations, the value of 𝐶𝑚𝑎𝑥 is 1 and the value of 𝐶𝑚𝑖𝑛 

is 0.00001. 

 

2. 4. Design Formulation            Design variables are a 

set of parameters that affect design details and design 

results. Different parameters affect the design of base 

isolation systems in building structures. Parameters that 

are independently involved in the behavior mechanism of 

Lead Rubber Bearings are selected as design variables. 

The behavioral model of any Lead Rubber Bearing is 

influenced by independent factors such as yield 

displacement (𝑋y), secondary time period (𝑇2), base shear 

yield coefficient (α), damping ratio (𝜉𝑏), etc., that 

parameters such as initial hardness (𝐾1), Secondary 

stiffness (𝐾2), yield shear strength (𝑄𝑦) and damping 

coefficient (𝑐𝑏) are functions of these changes. In the 

optimum design of a Lead Rubber Bearing, these 

parameters are selected as the design variables. 

Constraints on the optimum design of isolations apply to 

the design variables due to physical limitations and 

acceptable results. According to the above, the optimum 

design of Lead Rubber Bearing for building structures is 

formulated as Equation (25): 

𝐹𝑖𝑛𝑑: 𝐷𝑒𝑠𝑖𝑔𝑛 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑋 = {

𝑋y
𝑇2
𝛼
𝜉𝑏

}  

(25) 𝑤ℎ𝑖𝑐ℎ 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑠 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑓(𝑋)  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

{
 
 

 
 𝑋y𝑚𝑖𝑛

≤ 𝑋y ≤ 𝑋y𝑚𝑎𝑥
𝑇2𝑚𝑖𝑛 ≤ 𝑇2 ≤ 𝑇2𝑚𝑎𝑥
𝛼𝑚𝑖𝑛 ≤ 𝛼 ≤ 𝛼𝑚𝑎𝑥
𝜉𝑏𝑚𝑖𝑛 ≤ 𝜉𝑏 ≤ 𝜉𝑏𝑚𝑎𝑥

  

In this paper, the objective function for the 

optimization problem is defined based on performance 

indices for inter-story drift. This index shows the effect 

of control devices on system performance and is 

expressed based on the ratio of controlled maximum drift 

response to uncontrolled maximum response: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑓(X) =

|
𝑀𝑎𝑥(𝑑𝑟𝑖𝑓𝑡𝑖,𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑)

𝑀𝑎𝑥(𝑑𝑟𝑖𝑓𝑡𝑖,𝑈𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑)
|  

(26) 

where 𝑑𝑟𝑖𝑓𝑡𝑖 is the inter-story drift of the i-th story. 

The iteration process of the proposed algorithm has 

been summarized in Table 1 for steps i to i + 1. Also, the 

procedure of finding the displacement, velocity, and 

acceleration responses for the next steps are summarized 

in Table 2. 

 

2. 5. Numerical Case Studies            In this article, the 

numerical studies include three cases: 

Case 1: In the first case, the seismic behavior of the base-

isolated building structure with LRB is analyzed for 

sensitivity to evaluate the effect of LRB mechanical 

parameters and the mass irregularity of the structure. 
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TABLE 1. Summary of the steps of Newton-Raphson method 

used here 

1) Data definition: 𝑢𝑖+1
(0)

= 𝑢𝑖  , 𝑓𝑆
(0)
= (𝑓𝑆)𝑖, ∆𝑅

(1) = ∆𝑝̂𝑖, 

𝐾̂𝑇 = 𝐾̂𝑖 

2) Iterative calculations (j=1,2, …):       𝐾̂𝑇∆𝑢(𝑗) = ∆𝑅(𝑗) →
∆𝑢(𝑗) ,  𝑢𝑖+1

(𝑗)
= 𝑢𝑖+1

(𝑗−1)
+ ∆𝑢(𝑗)  

∆𝑓(𝑗) = 𝑓𝑆
(𝑗)
− 𝑓𝑆

(𝑗−1)
+ (𝐾̂𝑇 − 𝐾𝑇)∆𝑢

(𝑗),  

∆𝑅(𝑗+1) = ∆𝑅(𝑗) − ∆𝑓(𝑗)   

3) Repeating (j→j+1)  

 

 
TABLE 2. Steps of the Newmark method used here 

Average acceleration method  𝛽 =
1

4
 , 𝛾 =

1

2
 

1) Initial calculations:     𝑢̈0 =
𝑝0−𝑐𝑢̇0−(𝑓𝑠)0

𝑚
  

1-2)  Determination of the ∆𝑡 :    𝑎 = 1

𝛽∆𝑡
𝑚 +

𝛾

𝛽
𝑐  ,     𝑏 =

1

2𝛽
𝑚+ ∆𝑡 (

𝛾

2𝛽
− 1) 𝑐  

2)  Iterative calculations:  ∆𝑝̂𝑖 = ∆𝑝𝑖 + 𝑎𝑢̇𝑖 + 𝑏𝑢̈𝑖  

2-1) Determination of the tangential stiffness (𝐾𝑖) :      𝑘̂ =
𝑘 +

𝛾

𝛽∆𝑡
𝑐 +

1

𝛽(∆𝑡)2
𝑚  

2-2) Determination of the  ∆𝑢 using the updated Newton-

Raphson method and Table 1: 

∆𝑢̇𝑖 =
𝛾

𝛽∆𝑡
(∆𝑢𝑖) + −

𝛾

𝛽
𝑢̇𝑖 + ∆𝑡 (1 −

𝛾

2𝛽
) 𝑢̈𝑖 ,   ∆𝑢̈𝑖 =

1

𝛽(∆𝑡)2
(∆𝑢𝑖) −

1

𝛽∆𝑡
𝑢̇𝑖 −

1

2𝛽
𝑢̈𝑖  

 𝑢̈𝑖+1 = 𝑢̈𝑖 + ∆𝑢̈𝑖   ,  𝑢̇𝑖+1 = 𝑢̇𝑖 + ∆𝑢𝑖̇    ,  𝑢𝑖+1 = 𝑢𝑖 + ∆𝑢𝑖  
3) Repeating (i→i+1) 

 

 

Case 2: In the second case, the LRB isolation system is 

designed using the GOA meta-heuristic optimization 

method. To have a comprehensive comparison of GOA 

algorithm performance, some of the well-known 

metaheuristic algorithms, such as Particle Swarm 

Optimization (PSO), Harmony Search (HS), and 

Colliding Body Optimization (CBO), are selected to 

solve the optimum design of LRB. 

Case 3: Finally, in the third case, the seismic behavior of 

isolated building structures with optimized LRB isolators 

using GOA with the best solution is evaluated under near-

fault earthquakes and mass irregularities, and the 

performance of LRB isolators is compared in different 

conditions. 

For numerical studies, benchmark structural models 

are used. These structural models include two models of 

5-story (Example 1) and 10-story (Example 2) building 

structures. These structures have a two-dimensional 

lumped mass shear building system. The mechanical 

properties of the considered structures, such as mass, 

stiffness, and damping, are assumed to be the same for all 

the stories. The mass and stiffness of each story are 

respectively 445 ton and 448 𝑀𝑁 𝑚 ⁄ for 5-story models; 

those values are respectively 252.1 ton and 354.2 

𝑀𝑁 𝑚 ⁄ in the 10-story models. For these models, the 

damping ratio (𝜉𝑠) is assumed to be 0.02 and the damping 

coefficient (c) for each story can be calculated using 

Riley method. Also, the reference structural models are 

drawn in Figure 2.   

To calculate the seismic responses and optimize the 

design of the LRB isolator, the generated Gaussian 

random white noise with a duration of 40 seconds and a 

maximum acceleration of 0.35 g is used as ground motion 

acceleration (Figure 3). Also, the ground acceleration of 

near-fault earthquakes is used to study the seismic 

behavior of isolated building structures with the optimal 

LRB system. According to many of the past studies [42-

44] and seismic design guidelines, the recordings of three 

real earthquakes were utilized in this research. The 

Imperial Valley, the Northridge, and the Chi-Chi 

earthquakes were used here. The details of the considered 

earthquakes are presented in Table 3, which are selected 

from the Pacific earthquake Engineering Research Center 

(PEER). Irregular conditions for building models are 

defined based on mass irregularities in the height of the  

 

 

    
Figure 2. Reference structural models considered here  

 

 

 
Figure 3. Time history of ground acceleration in random 

white noise (W(t)) 
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TABLE 3. Details of earthquakes used in this study [28] 

Event Station Magnitude 
Distance 

(km) 

PGA 

(
𝒎

𝒔𝟐
) 

𝑷𝑮𝑽

𝑷𝑮𝑨
 

Imperial 

Valley 
El Centro 6.5 1.35 4.40 0.26 

Northridge NWH-360 6.7 6.8 5.79 0.17 

Chi-Chi TCU-052 7.6 1.84 3.56 0.52 

 

 

structure. Irregularity for this building model is defined 

as a 50% variation in the mass of successive stories. 

 

 

3. RESULTS AND DISCUSSION 
 

To show the effect of each parameter of the isolator on 

system performance, the sensitivity analysis is used here. 

To achieve this aim, the sensitivity of the seismic 

responses of isolated structures with LRB is evaluated in 

relation to changes in the values of the yield base shear 

coefficient, secondary period, yield displacement, 

damping coefficient, and mass irregularity. Every 

parameter changes incrementally in the allowable range 

of parameters. The changes in maximum inter-story drift 

responses for each component are shown in Figures 4 and 

5 for 5 and 10- story building models, respectively. As 

shown in Figures 4 and 5, the structural drift response has 

a high sensitivity to the yield base shear ratio. Also, the 

mass irregularity does not have a considerable effect on 

the performance of isolated structures. 

In the second part, the results obtained from solving 

the optimization problem in the design of isolation 

systems with LRB isolators are presented. The outputs of  

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4. The variation of maximum drift response in a 5-

story isolated building structure relative to: (a) mass 

irregularity; (b) base shear ratio; (c) Damping; (d) secondary 

time period; (e) yield displacement 

 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 5. The variation of maximum drift response in a 10-

story isolated building structure relative to: (a) mass 

irregularity; (b) base shear ratio; (c) Damping; (d) secondary 

time period; (e) yield displacement 
 
 

this problem include the convergence history of the 

objective function, the minimum value calculated for the 

objective function, and the optimal values of design 

variables. Figure 6 shows the convergence history 

diagram for the defined objective function based on 

controlled seismic responses in the isolated building with 

LRB isolators for the GOA. According to this method, 

the minimum value for the ratio of maximum controlled 

responses to uncontrolled responses for the 5-story 

structural models is 0.19995, and for 10-story structural 

models, it is 0.4058.  

In order to perform a comprehensive evaluation of the 

performance of the algorithms, a statistical test was 

performed based on the best solution, the mean, and the 

standard deviation of the solutions. The results of 

statistical tests for the GOA algorithm compared to PSO, 

HS, and CBO algorithms to solve the optimum design of 

the base isolation system are presented in Table 4. This 

statistical test was performed for each 5 and 10-story 

building structure case study based on 30 independent 

runs. According to the results of this test, in Table 4, the 

GOA algorithm shows its stability and robustness for 

solving the LRB design problem. Table 5 shows the 

results obtained from the optimal design of LRB isolators 

using GOA, including design variables and constraints 

for 5 and 10-story structural models. 

Finally, the seismic behavior of isolated building 

structures using optimized LRB isolators is evaluated in 

both regular and mass irregularity cases under near-fault 

earthquakes. In this regard, the time history of seismic 

inter-story drift response at the maximum level is 

compared to the near-fault records of the Imperial Valley, 

Northridge, and Chi-Chi. Figures 7 to 9 show the drift 

time history of a 5-story structure for each earthquake. 

Under the Imperial Valley earthquake, the maximum 

drift is 0.95 cm for the regular 5-story structural model 

and 0.99 cm for the irregular 5-story structural model. For 

the Northridge earthquake, the maximum drift is 0.72 cm 

for the regular 5-story structural model and 0.70 cm for 

the irregular 5-story structural model. Also, under the 

Chi-Chi earthquake, the maximum drift value is 1.10 cm 

for the regular 5-story structural model and 1.05 cm for 

the irregular 5-story structural model. 
 

 

 
(a) 

 
(b) 

Figure 6. Convergence history of the objective function for 

the design of LRB with the GOA (a) 5-story (b) 10-story 

 

 

TABLE 4. Statistical test for the optimization problem 

Model Test PSO HS CBO GOA 

5- 

story 

Best 0.21754 0.25736 0.24328 0.19995 

Mean 0.25641 0.29768 0.27585 0.22584 

STD 0.04743 0.05303 0.04538 0.02461 

10- 

story 

Best 0.41886 0.46629 0.45043 0.40579 

Mean 0.45718 0.50906 0.48452 0.43041 

STD 0.04938 0.05954 0.04489 0.03615 
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TABLE 5. Optimal design results for the LRB isolator with 

GOA algorithm 

Set Parameter Dimension 
Value 

5- Story 10- Story 

Objective 
Function 

Controlled 
Responses 

- 0.19995 0.40579 

Design 
Variables 

Yield Base Shear 

Ratio (𝛼) 
- 0.055024 0.058653 

Yield Deformation 

(𝑋y) 
cm 0.019219 0.038141 

Secondary Period 

(𝑇2) 
s 2.9937 3.9946 

Damping Ratio (𝜁𝑏) % 0.20751 0.13873 

Constraints 
Stiffness Ratio (𝛼𝑘) - 0.1569 0.16407 

Isolator Deformation cm 0.20127 0.3849 

 

 

 
Figure 7. Time history of maximum drift for the 5-story 

model under Imperial Valley earthquake 
 

 

 
Figure 8. Time history of maximum drift for the 5-story 

model under Northridge earthquake 
 

 

 
Figure 9. Time history of maximum drift for the 5-story 

model under the Chi-Chi earthquake 
 

 

Figures 10 to 12 show the time history of maximum 

drift for a 10-story structure under each earthquake. 

Under the Imperial Valley earthquake, the maximum 

drift is 1.53 cm and 1.60 cm for the regular and irregular 

10-story structural models, respectively. For the 
 

 
Figure 10. Time history of maximum drift for the 10-story 

model under Imperial Valley earthquake 

 
 

 
Figure 11. Time history of maximum drift for the10-story 

model under Northridge earthquake 

 
 

 
Figure 12. Time history of maximum drift for the 10-story 

model under the Chi-Chi earthquake 

 
 
Northridge earthquake, the maximum drift for a 10-story 

structural model in both regular and irregular modes is 

1.16 cm. Also, under the Chi-Chi earthquake, the 

maximum drift value for a model of 10-story structures 

in both regular and irregular modes is 1.00 cm. As can be 

seen, the presence of irregularities in the isolated 

structure does not affect the drift response of the structure 

under near-fault earthquakes. The existence of mass 

irregularity in the structure can lead to a change in the 

main period time of the structure and, consequently, a 

change in the seismic behavior of the structure. However, 

the use of seismic isolators at the base of building 

structures increases the main period of the structure. And 

it creates distance from the dominant frequencies of 

ground motion. 
 

 
4. CONCLUSIONS 
 
The primary purpose of this study was to optimum design 

a lead rubber-bearing seismic isolation system and 

evaluate the effects of mass irregularity and near-fault 
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seismic excitation on the seismic responses of buildings. 

Also, the sensitivity analysis of the isolated structures to 

the mechanical parameters of the lead-rubber bearing 

system and the mass irregularity was conducted here.  

For numerical studies, two models of 5- and 10-story 

building structures with lumped mass shear frame 

systems were selected. The seismic behavior of these 

structures was studied under regularity and irregularity of 

mass conditions and in two fixed base and isolated cases 

with the LRB isolator. The LRB system's characteristics 

were optimally designed using GOA.   

The sensitivity analysis of the seismic behavior of the 

LRB-isolated structures showed that the yield base shear 

ratio is the most influential parameter. According to the 

results of statistical tests comparing the GOA algorithm 

to the PSO, HS, and CBO algorithms to solve the 

optimum design of the base isolation system, the GOA 

has an excellent ability to solve the optimization problem 

of the isolation system design for building structures. The 

seismic performance of LRB isolation systems, which 

were optimally designed for regular structures, was not 

affected by mass irregularities in the structure. Also, the 

LRB isolation system had the identical performance in 

controlling the seismic responses of structures in the 

presence of mass irregularity under near faults 

earthquakes for both 5- and 10-story models. In other 

words, the performance of LRB isolators was not 

degraded by changes in the height of building structures. 
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Persian Abstract 

 چکیده

ی اداسیاپی  ید  اا امر روی رفتار سییتیتج اداسیاپی پااث ادر تا یتث با یندب بنابرااجا انحای تحفیس تتیاسیی  رفتار سیاپ   رتوانند بپارامترهای مکانیکی و هندسیی متتف  می

تج  سیاپی رراتی  یوند تا ادراع اوامس متتف  تر هنها احاگ درتتب تر ااج ملاا،ثا راربرت اا ااروراهای بهینثهای اداسیاپی بااد با رو ضیروری اسی ب تر نتیحثا سییتیتج

های سیاتتاانی بررسیی  یدب تحفیس تتیاسیی  رفتار  ای سیاپ سیاپی ارپ ( برای مقاویLRBی سیربی  های اداسیاپ سسیتیکی با هتیتثسیاپی اداد تر رراتی سییتیتجبهینث

ها  پما  غیرتلی اه  ت،ییج پاسی  -اتچثسیاتتاا  اداسیاپی  ید  با ترنگر درفتج تییو ییاع مکانیکی سییتیتج اداسیاپ و نامنگای ارمی انحای درتادب تر اانحاا تحفیس تار

هداف ا ییفی بررسییی یابفی  ا( تهیث  ییدب GOAسییاپی مف   با اسییتدات  اپ ااروراتج اداد بهینث  MATLABی ی اداسییاپ تر برنامثبث رار رف  و هاچنیج رراتی بهینث

ی یابفی  ملفوب ااج ااروراتج تر رراتی ااج نوع بوتب نتااج نشیا  تهند   LRBتج های اداسیاپی  ید  با سییتی ی پارامترهای یاب سیاپی مف  تر رراتی بهنیثااروراتج بهینث

ها بوتب نامنگای ارمی نیز  ی تتیفیج تارای بیشیتراج ادر روی پاسی ی اداسیاپی  ید  نشیا  تات رث  یاتش بر  پااثسییتیتج اداسیاپ بوتب هاچنیجا تحفیس تتیاسیی  پاسی  سیاپ 

    اتبادر ناچیزی تر تحفیس تتاسی  نشا  ت
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