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One of the most important quality characteristics in a production process is the product lifetime. The
production of highly reliable products is a concern of manufacturers. Since it is time-consuming and
costly to measure lifetime data, designing a control chart seems difficult. To solve the problem, lifetime
tests are employed. In the present study, one-sided and two-sided exponentially weighted moving
average (EWMA) control charts are designed under a type Il censoring (failure censoring) life test.
Product lifetime is a quality characteristic dealt with in this study. It is assumed to follow the Weibull
distribution with a fixed shape parameter and a variable scale parameter. In order to design a control
chart, first, the control chart limits are calculated for different parameters, and then the Average Run
Length (ARL) in the out-of-control state is used to evaluate the performance of the proposed control
chart. Next, a comprehensive sensitivity analysis is performed for the different parameters involved. The
computational results show that the one-sided control chart has better performance to detect the shift of

Average Run Length lifetime data than the two-sided control chart. The average run length curve of the two-sided control
chart is biased, while that of the one-sided control chart is unbiased. A very effective parameter that
increases the performance of a control chart is found to be the number of failures in the failure censoring
process. Finally, simulated and real examples are provided to show the performance of the proposed
control chart.

doi: 10.5829/ije.2021.34.11b.03
NOMENCLATURE
m Shape parameter UCL Upper control limit
o Scale parameter LCL Lower control limit
c Shift constant o Probability of type | errors for the control chart
r Number of failures B Probability of type Il errors for the control chart
n Sample size in the life test ARLO In-control average run length
V(i)  Statistic of the life test censoring ARL1 Out-of-control average run length
Q(i)  Statistic of the EWMA chart A Smoothing constant in the EWMA chart
r Gamma function ¢ Cumulative distribution function of the normal distribution

1. INTRODUCTION?

mainly to maintain the statistical stability of the process.
A control chart has a center-line (CL) and two control

Nowadays, many products of different brands are
introduced in markets, but consumers consistently
demand only a small number of them due to their quality
characteristics [1]. In this regard, statistical process
control (SPC) is widely used as a method of statistical
quality control (SQC). As a very powerful tool for
monitoring a process in SPC, a control chart is used
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limits, including the lower control limit (LCL) and the
upper control limit (UCL) [2]. Based on the sample
statistics, the process status is divided into in-control and
out-of-control states. If the drawn points are between the
LCL and the UCL, the process is assumed to be in
control; otherwise, it is assumed to be out of control [3].
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A serious weakness of the control charts designed by
Shewhart is in the use of the information of the last
sample rather than that of the old samples. Unlike
Shewhart control charts, memory-type control charts use
the information of both the old and the previous samples.
So, if the goal is to detect small changes in a process, it
is a memory-type control chart to use. Another popular
and widely-used memory-type control chart is the
EWMA control chart, first introduced by Roberts [4] in
1959.

To design a control chart for process monitoring,
there is a need for enough data about the quality
characteristics to be examined. However, collecting
enough data for this purpose is not practical in some
industries or processes. The problem is attributed to
product lifetime as an important quality characteristic;
data collection is difficult, time-consuming, and costly.
In this case, reliability lifetime tests are used to obtain the
required data on lifetime [5].

The application of control charts is now widespread
in various fields of engineering, management, services,
biology, healthcare, and finance. Kabiri and Bayati [6]
used control charts as important tools of statistical
process control in combination with modern tools such
as artificial neural networks. Fattahzadeh and Saghaei [7]
monitored their processes using image sensors and
control charts. Rasay et al. [8] showed the application of
multivariate  control charts in  condition-based
maintenance. Sadeghi et al. [9] proposed a control
method based on Shewhart control charts to monitor
financial processes.

In general, the research performed so far has been on
the type of control charts and life tests in various
distributions. For example, a Shewhart variable control
chart was designed by Khan et al. [10] through failure
censoring, assuming that lifetime follows the Weibull
distribution with a fixed shape parameter and a variable
scale parameter. Adebayo and Ogundipe [11] assumed
that product lifetime follows a generalized exponential
distribution with a fixed shape parameter and a variable
scale parameter. They then designed an attribute control
chart using truncated life tests. Balamurali and Jeyadurga
[12] designed an attribute NP control chart to monitor the
mean lifetime of type-1l Pareto distribution through
truncated life tests and multiple deferred state sampling.

Aslam et al. [13] presented a mixed control chart
through the accelerated hybrid censoring that monitors
variable and attribute quality characteristics. Rao et al.
[14] designed an attribute NP control chart via truncated
life tests and assumed that the product lifetime follows a
Dagmu distribution with a fixed shape parameter and a
variable scale parameter.

Xu and Daniel [15] presented a WEWMA chart to
monitor lifetime with the Weibull distribution using type
I censored data. In the research by Faraz et al. [16], the
shape and scale parameters of the Weibull distribution
were assumed to be unknown, and then the control charts

of S? and Z were proposed to monitor the shifts in the
shape and scale parameter of the Weibull distribution.
One-sided and two-sided t-control charts were presented
by Rasay and Arshad [17] using a failure censoring test
to monitor lifetime when it followed exponential
distribution. Table 1 summarizes the most relevant
studies in this area.

A literature review shows that the design of control
charts with life tests and monitoring lifetime data is of
great importance. In addition, most of the studies
conducted in this area are related to two-sided control
charts; there has been only a little research on designing
one-sided control charts and memory-based control
charts. To the best of the authors' knowledge, no research
has been conducted on designing one-sided EWMA
control charts using failure censoring life tests.

Hence, in the present study, the one-sided and two-
sided EWMA control charts are designed through a Type
Il censoring life test to monitor the average lifetime of
the Weibull distribution. For this purpose, first, the
relationships among one-sided and two-sided control
limits, type Il error, and the average run length in the out-
of-control state are identified. Then, the performance of
the control chart is evaluated by ARL in the out-of-
control mode. Finally, a comprehensive sensitivity
analysis is performed based on the problem parameters.

TABLE 1. Research summary

Lifetime . Control
distribution Life test chart Year  Author
. - Nasrullah
Weibull failure variable 5018 Khan etal.
censoring  control chart
[10]
Truncated Balamurali
Weibull . np 2018 & Jeyadurga
life test
[12]
Shewhart Faraz et al
Weibull - control chart 2014 [16] ’
(X ands)

. Adebayo &
Generallz_ed Tr_ancated np 2020  Ogundipe
Exponential life test

[11]
hybrid . Muhammad
Weibull censoring M|xecc:];:?tntrol 2020 Aslametal.
life test [13]
Pareto .
distribution of ~ Truncated Balamurali
. np 2019 & Jeyadurga
the second life test [12]
kind
Trancated Rao et al.
Dagmu life test np 2019 [14]
. failure Rasay &
Exponential censoring t control chart 2020 Arshad [17]
. type | WEWMA Xu & Daniel
Weibull censored chart 2018 [15]
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The rest of the paper is organized into several
sections. First, the problem for which the control charts
are designed is described. The next section discusses how
to design one-sided and two-sided control charts. Section
4 is devoted to the computation of the average run length
of the control charts. In section 5, several simulated
examples are presented. Using simulation studies, a case
study is presented in section 6. Finally, section 7
concludes the paper.

2. DESCRIPTIONS

Consider the lifetime of an item, which is denoted by X,
as its concerned quality characteristic. In the current
study, it is assumed that X follows the Weibull
distribution with the following cumulative distribution
function:

F(x) =1 - exp[-(x0)™] )

In Equation (1), 6 and m are the scale and the shape
parameters of the distribution, respectively. The mean
lifetime of the Weibull distribution has the following
form:

") @)

om

M:

In Equation (2), it is supposed that variable m has a
stable shape parameter, but the scale parameter needs to
be monitored using a suitable control chart. In the
following section, some control charts are proposed for
this purpose.

It is to be noted that the distribution of the data on
lifetime is determined according to historical data and by
statistical tests such as the goodness of fit test. Lifetime
is one of the characteristics that often follow non-normal
distributions; a normal distribution has limited
application in longevity data. Weibull, exponential,
normal log, gamma, and Pareto distributions are the most
important  distributions used to model quality
characteristics in reliability.

To monitor the scale parameter of the Weibull
distributed items, a failure censoring reliability test is
conducted. More specifically, first, n items are randomly
selected and put on the test simultaneously. The test
continues until r failures (r < n) are observed. During
the test, the failure time of each item is recorded to obtain
X(1), X(2), -» X(r) @S the order statistic data. Accordingly,
the following statistic is computed:

=3 (E) +a-n(E)" @3)

where o is the specified mean time and x; is the failure
time of the i'th item.

According to Jun et al. [18], Vi follows a gamma
distribution with parameters WO and r. Wy is computed
as follows:

m
Wo = (Bopo)™ = (%) (4)

According to Jun et al. [18], 2VW, follows a chi-
square distribution with 2r degrees of freedom.

It is desirable to monitor the scale parameter 6, or the
alternative process mean |, using an appropriate control
chart. As it is known, indeed, at each sampling point,
there is a statistical hypothesis test to conduct. Let's
assume 6o and po as the target values of the scale
parameter and the mean, respectively. In this regard, the
following hypothesis tests are conducted:

A_{Hoillzlio B:{H01M=H0

Horpt > po Ho:pt # o

Hypothesis test A leads to a one-sided control chart,
while B leads to a two-sided control chart.

3. DESIGNING THE CONTROL CHARTS

In this section, first, the design of a one-sided control
chart is discussed, and then a two-sided control chart is
presented.

As 2VW, follows a chi-square distribution with 2r
degrees of freedom, the following equations can be
obtained for the mean and the variance of V;:

EWV) = Wi (5)

var(V;) = W— (6)

At the i'th sampling time, the following EWMA
statistic is computed and plotted on an EWMA control
chart:

Q= AV + (1 =DQi— U]

where A is the smoothing parameter of the EWMA
control chart.

The central limit theorem is used to obtain the control
limits of the EWMA chart. According to theorem, if the
variables xq,x,,x3,...,X, are independent of one
another, it can be concluded that the sum or mean of x;
follows a normal distribution for large 'i's. Now, the
values are inserted in Equation (7) instead of all Q;_,, and
the following equation is obtained:

Qi = ATEL(L = DIV, + (1 - D)iQy ®)

Based on Equation (8), the values of Q; depend only
on the initial value of Q, and the values of V;. Therefore,
Q; values will be independent of each other. According
to the central limit theorem, it can be concluded that the
mean and variance of Q; for a large value of | are as
follows:

EQ)=EW) =~ 9



P. Mohammadipour et al. / [JE TRANSACTIONS B: Applications Vol. 34, No. 11, (November 2021) 2398-2407 2401

Var(Q;) = Var(V;) x (ﬁ) =—X % (10)

In the following, the relationships of control limits, 8
error and ARL, are presented for one-sided and two-sided
EWMA control charts.

3. 1. One-sided Control Chart Suppose that a
process is only concerned with monitoring the
deterioration of quality characteristic. In this case, one-
sided control charts are used with LCL.

The Equation of LCL, based on the results of the
central limit theorem and the mean and variance of Q;, is
as follows:

LCL = #Ql - kUQi

r A r 0.5
= La (5 W—g)
where K is the coefficient of control limits, which is

considered equal to Z,, and Z, is a certain percentage of
the distribution N (0,1). So, P {Z>Z,} = a.

(11

3. 2. Two-sided Control Chart The one-sided
control chart cannot show the improvement of the
process. To monitor both the improvement and the
deterioration of the process, a two-sided control chart is
used. Like in most two-sided control charts, let's assume
type I error is equally divided for both sides of the control
chart.

The control limits of a two-sided control chart are as
follows:

1 0.5
UCL = g, + kag, = =+ Zay, (55 WLOZ) (12)
_ _r A r\05 13
LCL_“Qi_kUQi_WO_Z“/z(EXW_OZ) ( )

Equations (12) and (13) serve to calculate the values
of LCL and UCL, respectively. If a point falls between
the two limits, it means that the process is probably in-
control. On the other hand, the occurrence of a point
below the LCL can be a sign of the process deterioration,
while its being above the UCL is suggestive of the
process improvement. With a flowchart, Figure 1 shows
the stages of the proposed control chart.

4. COMPUTING THE ARL OF THE CONTROL
CHARTS

An important indicator of the performance of a control
chart is the Average Run Length (ARL). Every control
chart has two ARLS; one corresponds to the in-control
state (ARLo), and the other to the out-of-control state
(ARLy).

The value of ARL, is the inverse of type I error; that
iS, ARLo = 1/a. The value of ARL;, however, depends on

the values of the shift and the other characteristics of the
control chart.

Let's consider a case in which the scale parameter of
the distribution shifts from 6, to c6, and value c
determines the magnitude of the shift. For a one-sided
control chart, B can be obtained as follows:

B =PQ; >LCL|I6, =chy) =1—

r

LCL —

¢ W1/ —
A r

— X [

2-1" w?

Similarly, for a two-sided control chart, B is calculated as
follows:

UCL——— LCL———
15)
| = er — ¢\ = er (
2 w? pavie]

To obtain the ARL, values, first, the B values are
obtained, and then the values of ARL, are calculated with
Equation (16).
1

1-8

For example, the values of ARL1 for a two-sided
control chart are given in Table 2. The following results
can be inferred from comparing the tables together and
examining the trend of ARL, shifts for different
parameters.

(14)

‘—' Calculate control limits

Select n item randomly

I

Simultaneously put the
item on the life testing

The life testing continues
until observing r’th
failure

N S

Record the time of r'th
failure and Calculate value
of Vi

L

Calculate value of Qg

—

Plot Q(i) on the control
chart

Declare the process
is in control

Declare the process
is out of control

Figure 1. The flowchart of the proposed control chart
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TABLE 2. The ARL for a two-sided control chart

14 74080  69.09 16.78 6.61 3.50 2.26
1.6 74080 23.80 4.42 1.89 1.27 1.08
1.8  740.80 9.33 1.84 112 1.01 1.00
2 740.80 4.29 1.18 1.01 1.00 1.00
25  740.80 1.34 1.00 1.00 1.00 1.00

3 740.80 1.01 1.00 1.00 1.00 1.00

m=1.5 A=0.2
ARL0=200
r 1 2 3 4 5 6
c ARL1

0.2 1.01 1.00 1.00 1.00 1.00 1.00
0.4 1.07 1.01 1.00 1.00 1.00 1.00
0.6 1.61 1.20 1.08 1.03 1.01 1.00
0.8 7.93 4.72 3.35 2.62 2.17 1.88

1 200 200 200 200 200 200
12 33167 108.11 50.22 28.00 17.53 11.90
14 27194 3213 9.28 4.19 2.48 1.76

16 22055 11.04 2.78 1.47 113 1.03
1.8 17735 4.57 1.40 1.05 1.00 1.00
2 141.65 2.34 1.06 1.00 1.00 1.00
2.5 79.14 1.08 1.00 1.00 1.00 1.00
3 43.68 1.00 1.00 1.00 1.00 1.00

m=0.5 2=0.2
ARL,=370
r 1 2 8 4 b5 6
o ARL,
0.2 1.60 1.19 1.07 1.02 1.01 1.00
0.4 4.66 2.72 1.98 161 1.40 1.27
0.6  19.58 11.59 8.01 6.03 4.80 3.96
0.8 96.83 73.71 58.80 48.44  40.85 35.09
1 370 370 370 370 370 370
12 655 478.2 369.0 2955 2430 203.9
1.4  729.60 358.3 2129 1401 98.47 72.53
1.6 739.5 264.2 1282 7290 4584 30.96
1.8 740.6 199.7 81.74 4144 24.08 15.39
2 740.7 154.5 54.66  25.36 13.97 8.67
25 740.80 87.97 23.60 9.57 5.02 3.14
3 740.8 54.66 12.21 4.75 2.58 1.75
m=0.5 2=0.2
ARL,=200
r 1 2 3 4 5 6
c ARL,
0.2 1.52 1.16 1.06 1.02 1.01 1.00
0.4 3.96 241 181 1.50 1.32 1.22
0.6 14.44 8.89 6.32 4.86 3.94 3.31
08 60.73 47.37 3849 3218 2749 23.87
1 200 200 200 200 200 200
12 32953 24733 19485 158.68 132.38 11251
14 35179 18181 11210 76.07 54.92 41.43
16 34091 131.24 6735 4011 26.27 18.40
18 32654 9743 4301 2322 1424 9.56
2 313.02 74.24 28.92 14.53 8.56 5.64
25 28405 41.22 12.82 5.86 3.39 231
3 260.38  25.29 6.90 3.13 1.93 1.43
m=1.5 2=0.2
ARL0=370
r 1 2 3 4 5 6
c ARL1
0.2 1.01 1.00 1.00 1.00 1.00 1.00
0.4 1.07 1.01 1.00 1.00 1.00 1.00
0.6 171 1.23 1.09 1.04 1.01 1.01
0.8  10.07 5.74 3.97 3.03 2.46 2.09
1 370 370 370 370 370 370
12 74052 220.34 9555  50.32 29.98 19.49

According to Figure 2, with an increase in the value
of r, the values of ARL; decrease. This is because the
higher the number of failures in a process, the longer the
test time, and the greater the chance of detecting a shift.
Therefore, the probability of B error and the value of
ARL, are reduced.

According to Figure 3, the value of ARL, increases as
the value of ARL, rises. Also, as the value of ARL,
increases, the control limits become wider. This means
that if a shift occurs in the process, the delay of the chart
to detect the shift increases.

According to Figure 4, the value of ARL; decreases
with an increase in the value of m. Indeed, an increase in
the value of m decreases the probability of B error;
consequently, ARL; decreases too.

According to Figure 5, ARL,; value decreases with an
increase in the value of c. The larger the shift constant in
a process, the larger the shift, and the sooner the shift is
detected by the chart. Therefore, the probability of B error
and ARL. is reduced. In addition, referring to the charts
presented, it is quite clear that the ARL, chart is
asymmetric. The values of ARL, for ¢ > 1 are greater than
those for ¢ < 1. So, the chart can detect ¢ < 1 shifts faster.

According to Figure 6, the value of ARL; increases
as the value of A rises. This is because the distance
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between the control limits increases when A rises;
therefore, the chance of detecting shifts in the process
decreases.

As Figure 7 suggests, an increase in the value of o
causes a decrease in the values of ARL; decrease, which
is because the increase of a decreases the probability of
B error and, consequently, ARL;.

The best performance of a control chart is achieved
when ARL, has its maximum value, ARL,, when the
process is in control, i.e., ¢ = 1. The ARL, value decreases
as soon as a shift occurs in the process. In the EWMA
control chart, the ARL, chart is biased in some cases; that
is, in some cases and for some parameter values, the
maximum amount of ARL, does not occur at ¢ = 1, as
shown in the charts and tables. The r parameter is one of
the most important factors that increase the ability of the
control chart to detect deviations. This increase greatly
improves the chart performance. In other words, as r
increases, the biased ARL curve problem is relieved.

In a one-sided EWMA control chart, the ARL; values
are always lower than the ARL, values of a two-sided
control chart. This is because the LCL of the one-sided
control chart is larger than that of the two-sided control
chart. Therefore, in the event of a shift in the process, the
one-sided control chart will detect the deviation faster, as
illustrated in Figure 8. Moreover, because the one-sided
control chart has only one control limit, it monitors the
process only on one side, and its ARL, chart has a
uniform behavior. This is unlike the ARL, chart of the
two-sided control chart, which is biased.

5. SIMULATION STUDY

To show the performance of the control charts, two
examples are presented here. A two-sided control chart is
used in the first one, and the second one is about a one-
sided control chart.

5. 1. Example 1 A simulation study is conducted
to show the performance of the proposed control charts.
First, 20 sample points are generated while 8, = 1. Then,
30 sample points are generated while the scale parameter

500

ARL1

......... r=2 -—-- =3

Figure 2. ARL1 of the two-sided control charts for different
values of r

450

N

“\
\
350 \
1
300 \
\
250 \
3 200 \
o \\
< 150
100

50

ARLO=200 ======- ARLO=370

Figure 3. ARL: of the two-sided control charts for different
values of ARLo

m=1.5

Figure 4. ARL: of the two-sided control charts for different
values of m

r=4

C
......... =2 ====7=3
Figure 5. ARL; of the two-sided control charts for different
values of ¢

ARL1

0 0.2 0.4 A 0.6 0.8 1
r=2

Figure 6. ARL: of the two-sided control charts for different
values of A
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a=0.005
Figure 7. ARL: of the two-sided control charts for different

------- 0=0.0027

values of a

1 15 2 2.5 3
Two_Sided Geeee One_Sided

Figure 8. Comparison of the ARLs for one-sided and two-
sided control charts

shifts from 6, = 1 to 6 = 0.7. The other inputs of the
control charts include ARL, =370,m =2,n=5,r =
3,and 1 = 0.2. Table 3 presents the limits of the control
charts. The values of the control statistic Q; and the
failure times are also provided in Table 4. The values of
Qi are plotted on the control chart in Figure 9. The figure
clearly shows the changes in sample 26.

5.2.Example 2 In this example, First, 15 sample
points are generated while 6, = 1. Then, 25 sample
points are generated while the scale parameter shifts from
6, = 1to 8 = 1.5. The other inputs of the control charts
include ARL, = 200,m =1.5n=5,r =3,and 1 =
0.3. Table 3 shows the limits of the control charts. The
values of Q; are also plotted on the control chart in Figure
10. The changes in sample 21 are evident in this figure.

6. CASE STUDY

As a case study, the real data of a car manufacturer in
Korea are used to design control charts [10]. The data are
about the operational time of a part of the machine until
failure occurs in a period of one month.

The data follow the Weibull distribution with the
shape parameter m = 2.5 and the scale parameter 6o = 1.
The assumptions are ARLg =370, r =3, and A= 0.4. The
values of Viand Q; are shown in Table 5.

P. Mohammadipour et al. / IJE TRANSACTIONS B: Applications Vol. 34, No. 11, (November 2021) 2398-2407

TABLE 3. The control limits of the control charts

Two. ARLO = 370 m=2
sided r 1 2 3 4 5 6
UCL 25 43 602 763 921 107
A=02
LCL 0 07 161 254 351 45
Two- ARLO = 370 m=25
sided r 12 3 4 5 6
UCL 33 55 754 943 112 131
A=0.4
LCL - - 054 134 221 313
One- ARLO = 200 m=15
sided r 1 2 3 4 5 6
A=03 LCL - 05 131 214 301 391

TABLE 4. The simulated data and the statistical values

Sample 1 2 3 V(i) Qi)
1 0.2628 0.5986  0.6132  1.9805  2.344
2 0.4414 05978 0.6632  2.3829 2.375
3 0.1498 05276 0.6336 1.9163  2.008
4 0.2392 0.6305 0.8709 34758  3.182
5 0.0070  0.7756  0.8070  3.2532  3.239
6 0.3620  0.7147 0.8360 3.4869  3.437
7 0.1189 03033 0.8309 2.7722  2.905
- 8 0.6604 0.7968 0.9688 4.9490  4.540
C'I'D 9 0.2778 0.6529  0.6851 24337  2.855
10 0.4840 04872 1.0616  4.9056 4.495
11 0.1327 05609 0.6965  2.2762 2.720
T 12 0.4462 09839 11461 6.5036  5.746
E 13 0.2706  0.8077  1.0214  4.9088 5.076
14 0.4985 0.8817 1.0024  5.1446 5.130
15 0.1296  0.7848 09160 4.0106 4.234
16 04138 0.6800 1.0789 5.2533  5.049
17 0.3106  0.6931 09753 43677  4.504
18 04366 0.7921 09658 4.6046  4.584
19 0.3282 0.8221 09708 45978  4.595
20 0.4358 0.6012 0.7467 2.8316  3.184
Sample 1 2 3 V(i) Q(i)
21 0.8891 0.9600 1.0611 6.4804  5.821
'5 22 0.2434 0.8434 10434 5.1393 5.275
qll 23 0.4128 0.8442 09277 4.4119 4.584
24 0.2443  0.7908  1.1481  5.9073 5.642
~ 25 0.4036  0.4172 0.4844 13250 2.188
g 26 0.8674 14280 14397 114710 9.614
27 0.2146  0.4567 0.8865 3.3258  4.583



tAnA
Line


P. Mohammadipour et al. / [JE TRANSACTIONS B: Applications Vol. 34, No. 11, (November 2021) 2398-2407 2405

28 05578 1.0281 1.4927 10.2532 9.119 7 "

29 06363 10198 12363 7.6773  7.965 6 j"{\
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38 04016 0.6704 09525 4231 6479 Figure 10. The proposed control chart for the simulated data
39 13108 13249 14853 12.848 1157 while the process deteriorates

40 0.4727  0.8110 0.8543 3.909 5.442

41 0.1710 0.9366 1.8650 14.443 12.64
TABLE 5. The simulated data and the statistical values

42 0.3562  0.6444  0.8107 3.200 5.088

Sample 1 2 3 4 5) 6 7
43 04010 0.4344 15475  9.592 8.691

V(i) 8.26 9.68 322 375 514 130 297
44 0.5393 0.6582 0.9561  4.413 5.269

Q(i) 714 892 493 410 483 236 279

45 0.6136  1.1168 1.2072 7.633 7.160

46 09505 16125 18332 17.291 1527 Sample 8 9 o uno 1z u

47 1.0844  1.0919 1.2606 9.080 10.322 MU 592 342 41l 459 799 976 539

B ocioc 07171 1ol 6l 7522 QG) 498 388 446 455 696 892 645

49 01140 09953 12717 7.450  7.468 Sample 15 16 17 18 19 20 21

50 04324 04668 05071 1497  2.691 V() 240 380 386 165 110 311 423
Qi) 361 375 382 230 146 262 375

. . . I 2 2 24 2 2 27 2
The process is monitored with the EWMA control Sample 3 > o 8

chart. The control limits are shown in Table 3. The values V(i) 312 710 556 644 418 344 726
of Qi are plotted on the control chart (Figure 11). Q) 331 5096 568 621 479 385 624

Sample 29 30 31 32 33 34 35

16 V(i) 466 0.69 193 296 509 530 1022
1 Q(i) 513 2.02 196 266 436 502 8.66
1 Sample 36 37 38 39 40 41 42
0 V(i) 468 321 268 464 1051 252 111
S /\/\ Q(i) 588 401 308 417 861 435 208
6 v T iy \ UB=6.03 Sample 43 44 45 46 47 48 49
. V(i) 405 887 325 209 523 136 459
2 1B=1.61 Q(i) 346 725 445 279 450 230 3.90
0 1 T Sample 50
Sample V(i) 3.17

Figure 9. The proposed control chart for the simulated data .
while the process improves Q(i) 3.39
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Figure 11. The control chart proposed for real data

The EWMA chart shows that the process is
sometimes out of control, and corrective action is needed
immediately.

7. CONCLUSION

In this study, one-sided and two-sided EWMA control
charts were designed under Type Il censoring life tests.
As a quality characteristic of products, it was assumed
that lifetime would follow the Weibull distribution with
a fixed shape parameter and a variable scale parameter.
First, the relationships of control limits, B error and
ARL, were presented. Then, the control limits were
calculated for different parameters while ARL; were used
to evaluate the performance of the control charts. The
ARL, values of those parameters were also obtained and
presented in tables. As the numerical analyses showed,
the ARL ; values would decrease with an increase in r and
m and increase as the ARL values increased. Moreover,
as the r parameter increased, the ability of the control
chart to detect out-of-control states also increased.
Similarly, the ARL; values were found to rise with an
increase in the value of A. In the two-sided control chart,
the ARL, curve varied up and down uniformly. The
examination of the ARL , curves and values of the charts
proved that the one-sided control chart outperforms the
two-sided control chart in detecting shifts. Compared to
the Shewhart type control chart, the proposed control
chart has a significantly better capability of detecting out-
of-control states in production processes to avoid
producing low-quality items. Using the proposed control
chart, it is possible to have continual improvement in
lifetime as an important quality characteristic of
products. The mangers of manufacturing companies can
also significantly reduce their costs and improve the
competitiveness of their businesses. Moreover, since the
EWMA control chart is designed based on efficient
failure censoring life testing, it can decrease the cost of
the life testing involved in the application of control

charts. Designing EWMA control charts for hybrid
censoring life tests and unbiased EWMA control charts
under failure censoring is a recommendation for future
studies.
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