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A B S T R A C T  
 

 

This work proposes a geometrically non-linear vibratory study of a functional gradation beam 

reinforced by surface-bonded piezoelectric fibers located on an arbitrary number of supports, subjected 
to excitation forces and thermoelectric changes. The non-linear formula is based on Hamilton's 

principle combined with spectral analysis and developed using Euler-Bernoulli's beam theory. In the 

case of a non-linear forced response, numerical results of a wide range of amplitudes are given based 
on the approximate multimodal method close to the predominant mode. In order to test the methods 

implemented in this study, examples are given and the results are very consistent with those of the 

literature. It should also be noted that the thermal charge, the electrical charge, the volume fraction of 
the structure, the thermal properties of the material, the harmonic force and the number of supports 

have a great influence on the forced non-linear dynamic response of the piezoelectrically functionally 

graded structure.  

doi: 10.5829/ije.2021.34.11b.02 
 

 
1. INTRODUCTION1 
 
Functionally graded piezoelectric structures are 

heterogeneous composite materials with excellent 

mechanical and electrical properties, making them 

potentially useful for many applications in structural 

mechanics, electronics and other engineering fields. 

These structures are mainly composed of functionally 

graded materials (FGMs) and piezoelectric materials 

and are very useful in practice as they are related to 

structural vibration control and thermoelectric stress 

control. FGM is an advanced composite material that 

can change continuously between surfaces according to 

a certain distribution law. In general, FGM consists of a 

mixture of metal and ceramics. Refractory ceramics 

have a heat-insulating effect due to their low thermal 

conductivity, while ductile metals have higher 

mechanical properties and reduce the risk of fracture. 

 

*Corresponding Author’s Email: yassine.elkhouddar@ensem.ac.ma 

(Y. El khouddar) 

This gives FGMs the following advantages: they can 

withstand harsh streets in high-temperature 

environments while maintaining their structural 

integrity, as dmenstrated by Hosseini Hashemi et al. [1].  

Piezoelectric structures are another class of advanced 

materials: they are smart structures that can be used as 

actuators for piezoelectric transformers and sensors to 

control structural vibrations. The main advantage of 

piezoelectric materials is that they can affect the 

mechanical state of the structure by changing the 

electric field applied to the material, as shown in the 

document of Tadi Beni et al. [2]. Therefore, the 

piezoelectric FGM structure has the advantage of 

combining the characteristics of the FGM material and 

the piezoelectric material.   

In recent years, research activities related to this 

topic have been carried out. Demir et al. [3] have 

committed to solve the problem of bending nano/micro 

beams under concentrated and dispersed loads, and 

target various boundary conditions, i.e. cantilevered, 

tight, cantilevered and simply supported. Habibi et al. 
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[4] developed the size dependent non-linear formulation 

for the Euler-Bernoulli nano-beam using the size 

dependent coherent piezoelectric theory. In this 

analysis, the properties of the FGM piezoelectric beam 

on bending, buckling, and free vibration responses were 

obtained and discussed. Samani and Beni [5] studied the 

static behavior and nonlinear free vibrations of 

Timoshenko's piezoelectric nanobeams under 

mechanical and electrical loads. In this analysis, they 

found that the size-dependent derivative formulation 

and the results of the formula were compared with the 

results of the linear torque stress theory and the classical 

linear and non-linear theories [5]. Tadi Beni [6] studied 

the mechanical and thermal buckling of the flexoelectric 

nanobeam. The results of this study indicate that as the 

thickness and length scale parameter increased the 

critical load and the critical temperature change 

increased. In addition, the results showed that a decrease 

in flexoelectric coefficient related to beam softening, 

critical load and critical temperature is generally 

reduced. Tadi Beni [7]. studied the high-order 

electromechanical coupling of free-vibrating 

nanoparticles based on Euler-Bernoulli beams in a 

thermal environment. In this study, the influence of 

parameters (such as size, length and temperature) on the 

natural frequencies of isotropic and anisotropic 

nanobeams were investigated. Tadi Beni et al. [8] used 

the coherent torque stress theory to study the non-linear 

analysis of the free and forced vibration of isotropic 

piezoelectric/viscoelastic nanobeams in a piezoelectric 

process. Nowadays, FGM structures that couple with 

piezoelectric materials are one of the most important 

engineering elements that are used in various types of 

systems. They also play an important role in the field of 

active control and intelligent detection. Li and Cheng 

[9] have proposed a vibration analysis method used to 

reinforce the static thermal post-bending of FGM 

stamped beams with a piezoelectric layer bonded to the 

surface. Use of numerical methods to solve ordinary 

differential equations. Li et al. [10] studied the static 

bending and free vibration of the cantilevered 

piezoelectric FGM beam using the modified stress 

gradient theory and Timoshenko's beam theory. Kiani 

and Eslami [11] studied the buckling of FGM beams. In 

this analysis, they assumed that the buckling surface of 

the beam has several piezoelectric layers and is affected 

by the temperature changes and constant tension. Rafiee 

and coworkers [12] studied the non-linear free vibration 

of carbon nanotube-reinforced FGM materials with a 

piezoelectric layer on the surface, which can withstand 

the combined effects of heat and electric charge. The 

results showed that the ratio between non-linear and 

linear frequencies increased with increasing the volume 

fraction and temperature. In another study, the same 

authors investigated the nonlinear thermal bifurcation 

buckling of carbon nanotube-reinforced composites, in 

which a piezoelectric layer is bonded to the surface of a 

carbon nanotube structure [13]. Yuan [14] proposed an 

active vibration and sound control law based on an 

intelligent panel structure of dynamic vibration damper 

(DVA) type. Tang and Ding [15] analyzed the non-

linear dynamic response of the coupling of transverse 

and longitudinal deformations of a functional gradient 

bi-directional beam. In this investigation, they assumed 

that material properties, moisture and heat distribution 

change progressively in the thickness and length 

directions. Their results showed that the non-linear 

frequency increased with increasing temperature and 

humidity concentration. They also showed that moisture 

concentration has a great influence on the thermal 

vibration of the FGM beam. More recently, Liu and 

coworkers [16] have studied the non-linear vibration of 

piezoelectric nanoplate materials subjected to thermal 

loading under various boundary conditions. The 

analysis is based on the theory of non-native Mindlin 

Patch Theory. However, it should be noted that the 

proposed literature review reveals the following 

conclusions: most research on the geometric non-

linearity of FGM beams with surface-bound 

piezoelectric layers is limited to the use of numerical 

methods to solve the guiding equations. In addition, we 

have noticed that there are few studies on the forced 

vibration of piezoelectric FGM beams in thermal 

environments, and most research is based on linear 

theory. 

In this paper, for the first time, attempts are made to 

exploit the approximate multimodal method that is close 

to the dominant mode to solve the guiding equations of 

the forced vibration of geometrically non-linear FGM 

piezoelectric beams. The paper also aims to carry out a 

numerical study of the free and forced non-linear 

vibrations of FGM beams reinforced with surface-fixed 

piezoelectric layers. The latter is placed on any number 

of supports and subjected to mechanical, thermal and 

electrical loads. In addition, the research covers a wide 

range of thermal loads (300≤T≤500), electrical loads (-

400≤V≤ + 400) and volume fractions (0≤n≤5). 

 

 

2. FUNDAMENTAL EQUATIONS 
 
Consider the piezoelectric FGM beam shown in Figure 

1. The length of the rectangular cross-section of the 

beam is L and the thickness is H. It consists of an FGM 

core of thickness h and a layer of piezoelectric material 

of thickness hp. It is assumed that the piezoelectric 

actuator is symmetrical and perfectly adhered to the 

upper and lower surfaces of the FGM beam. The 

effective characteristics of the FGM beam are defined 

by the Voigt mixing rule [17], and the volume fraction 

is distributed using the power law [18], a technique 

commonly used by researchers because of its high  
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Figure 1. Coordinate system and schematic diagram of a 

piezoelectric functionally graded beams 
 
 

accuracy. The characteristics of FGMs are illustrated 

below [19]: 

1
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Most FGMs are used at high-temperature environments, 

and the characteristics of the constituent materials 

depend on temperature, which can be written according 

to the definition in the literature [20]: 

1 2 3
0 1 1 2 3( 1 )−

−= + + + +P P P T PT P T P T  (2) 

The piezoelectric material is assumed to have 

temperature-independent characteristics, where 11
C  and 

p
  are the reduced elastic constant and thermal 

expansion coefficient, respectively, as summarized in 

Table 1. P  is the temperature correlation coefficient of 

the FGM layer stated in Table 2. In this analysis, it is 

assumed that Young's modulus 
f
E  and coefficient of 

thermal expansion f
  are temperature dependent and 

can be evaluated at any temperature. However, the 

density f
 , thermal conductivity 

f
k  and Poisson's ratio 

are independent of temperature [21]. 

 

2. 1. Linear Formulation      The linear vibration 

equation of the piezoelectric FGM beam can be 

obtained:  

( )
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T
x

N  and P
x

N  are the thermal resultant and the electrical 

force, respectively. They are calculated using the 

relations given in documents [22-23]:  
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11
A , 

11
B  and 

11
D  are extension-extension, flexion-

extension-flexion and flexion-flexion coupling 

coefficients, respectively; which can be evaluated using 

the classical FMS beam theory, as reported in the 

literature [24-25]. Their definitions are as follows: 
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Equation (3) can be written in a slightly more 

complicated way, and the result is: 

4 0 + − = w w w  (6) 

In formula (6), the new symbol represents the following 

functional relationship: 
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The lateral displacement of the beam can be defined as 

the correlation between several functions [26]. We can 

write the general solution of equation (6) at the jth 

support as follows: 
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*x  is the dimensionless coordinate, which can be 

written * x
x

L
=  and j

j

x

L
 =  is the dimensionless position 

of the support. The index i changes from 1 to n, where n 

is the number of functions. The constants 
j

A , 
j
B , 

j
C  and 

j
D  are determined by the boundary and continuity 

conditions of the beam. We point out that due to the 

applied thermoelectric axial loading, this system of 

equations allows us to obtain the natural frequency 

which is solved iteratively using the Newton-Raphson 

algorithm and the shape of the vibration mode. 

 
2. 2. Non-linear Formulation       Taking into account 

von-Karman's geometrical non-linearity (explaining the 

tension of the beam in the median plane), the 

relationship between deformation and displacement can 

be written as follows: 
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The Von-Karman geometric non-linearity considered in 

Equation (9) is applicable to displacement amplitudes of 

the order of the thickness of the rolled beam. This 

hypothesis is generally considered in the literature and 

mentioned in literature [27]. Therefore, the kinetic 

energy e
T  of the piezoelectric FGM beam is equal to 

[28]: 
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For our case, the total elastic deformation energy of the 

Euler-Bernoulli beam is defined as follows: 
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The forces generated by the stresses 
x

N  and 
x

M  are the 

internal axial force and the bending moment acting on 

the median plane of the beam, respectively [29]. The 

lateral displacement function develops into a series of 

basic spatial functions, while the time function is 

considered as harmonics, as shown in literature [30]: 

( )( , ) sin= i iw x t a w x t  (12) 

The expressions of kinetic energy and potential energy 

that vary with the lateral displacement defined above 

can be expressed as follows: 
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ij
m , 

ij
k , 

ijkl
b  and 

ijk
V  are mass tensor, linear and non-

linear stiffness tensors. For the piezoelectric FGM beam 

excited by the force F(x,t) , non-linear vibration 

equations are studied. The physical force F(x,t)  excites 

the transverse mode of the structure by a set of 

generalized forces 
i
F (t) . These forces depend on the 

expression of F(x,t) , the point of excitation of the 

concentrated force, the repair in the range S  

representing the length of the beam or part of the beam, 

and the mode considered. The generalized force 
i
F (t)  is 

given by: 

( ) ( , ) ( , )= i i
S

F t F x t w x t dx  (15) 

In our case, the force F(x,t)  can be considered as the 

distributed harmonic force dF (x,t)  or the concentrated 

harmonic force cF (x,t)  acting on the point f
x . We can 

write [31]: 
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According to Hamilton's principle, the dynamic 

behavior of the structure is expressed as follows: 
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Given the symmetry of the matrices, the non-linear 

algebraic equations are calculated using tensor notation: 
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In order to carry out a general parametric study, we used 

a non-dimensional formulation by setting up: 
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where *
ij

m , *
ij
k  and *

ijkl
b  are the general non-

dimensional matrices which are defined by: 
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The generalized dimensionless force *d
i
f  corresponds to 

the uniformly distributed force in the range of 
* *S (0 S 1)   on one side, and the generalized 

dimensionless force *c
i
f  on the other side corresponds to 

the force concentrated at any point of the beam, defined 

in literature [32] as follows: 
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The numerical solutions of Equations (18) and (19) are 

obtained using the approximate method described by El 

Kadiri et al. [33]. This approximation consists of 

ignoring the second-order terms provided by the 

relevant mode. As mentioned in the literature, in the 

non-linear 
i j k ijkr
a a a b  expression of Equations (18) and 

(19), the second order term of i
  will be ignored, 

resulted in: 

3 2
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Formulas (18) and (19) can be expressed as matrices: 
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The index i changes from 2 to n, where * 
 

 is the 

matrix defined by 2 *
1 11ir
a b , and the vector 

  2 3 10
, ,...,RA  =      is a vector modeling the 

contribution coefficient, which can be determined by 

solving approximate linear Equations (25) and (26). 

 

 

3. PRESENTATION AND DISCUSSION OF 
NUMERICAL RESULTS 
 
In this numerical analysis, we consider that the length of 

the beam is L = 200 mm, the thickness H = 10 mm and 

the thickness of the FGM layer is h = 8 mm. The 

piezoelectric fibers are manufactured on the basis of 

PZT 5A, assuming that they are not affected by 

temperature, their characteristics are defined in Table 1 

according to literature [34]. The FGM layer is based on 

silicon nitride (Si3N4) and stainless steel (SUS304). 

Their Young's modulus and coefficient of thermal 

expansion are temperature dependent and are therefore 

listed in Table 2 according to literature [35-36]. Unless 

otherwise stated, we assume that the reference 

temperature is the same as the temperature of the lower 

surface of the piezoelectric FGM beam, while the 

temperature of the upper surface is variable and the 

Poisson's ratio of the FGM layer is a constant equal to 

0.28. In addition, in order to ensure the accuracy and 

validity of the results obtained from this analysis and 

approximation, verification and validation studies will 

be conducted in the following section. Subsequently, a 

comprehensive parameter study was conducted to 

evaluate the influence of different parameters on the 

non-linear vibratory behaviour of the piezoelectric FGM 

beam.  

 
3. 1. Comparison with Previous Results       The 

first application presents a non-linear vibratory analysis 

of the results of a homogeneous isotropic beam which is 

compared to the predictions reported in literature [37-

40]. Table 3 shows the ratio of the non-linear frequency 

to the linear frequency of the isotropic beam under 

different vibration amplitudes Wmax/r. The results 

presented in Table 3 show that there is a good 

agreement between the predicted value of the current 

method and the other published data in the literature.  

In another verification study, under the conditions 

corresponding to a thermal load c
T 300K=  and the 

absence of electric charge ( V 0V= ), the Backbone 

Curves of the piezoelectric FGM beam with different 

volume fractions of n  were considered in Figure 2. The 

figure shows that the results of this study are consistent 

with those obtained by Fu et al. [37]. Moreover, Figure 

3 clearly shows that the influence of the volume fraction 

index n  significantly affects the frequency ratio, and 

the non-linear frequency increases with increasing 

vibration amplitude. According to Figure 3, when the 

volume fraction remains constant n 1= , the voltage 

 

 
TABLE 3. Comparisons of non-linear and linear frequency 

ratios of a homogeneous isotropic beam 

Wmar/r Present Ref [37]  Ref [38]   Ref [39]   Ref [40] 

1 1.0222 1.0231 1.0222 1.0252 1.0222 

2 1.0868 1.0892 1.0857 1.0899 1.0857 

3 1,1880 1.1902 1.1831 1.1885 1.1833 

4 1,3187 1.3178 1.3064 1.3140 1.3065 

5 1.4723 1.4647 1.4488 1.4597 1.4477 
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variations V are respectively equal to V 400V= , 0V  

and 400V−  have little influence on the backbone 

curves. Figure 4 shows the effect of temperature 

changes (
c
T 300,400,500K= ) when the volume fraction 

is kept constant at n 1= . The influence of temperature 

and volume fraction on the amplitude-frequency 

response curve is more severe than that of electrical 

charge. This can be predicted by formula (4), the value 

of the piezoelectric deformation constant  is much less 

than the thermal expansion coefficient. At the same 

time, the difference in thickness between the 

piezoelectric layer and the FGM layer is another factor. 

It can also be seen that the results of this study are 

consistent with those of the literature. It should also be 

noted that an increase in temperature causes an increase 

in the ratio of the non-linear frequency to the linear 

frequency. 

 

 

TABLE 1. Properties of PZT 5A 

Properties p
E  (Gpa) 

p
  (Kg/m3) 

p
  (W/mK) 

p
  

p
  (1/K) 

31
d  (m/V) 

Values 63 7600 2.1 0.3 0.9e-6 2.54e-10 

 

 

TABLE 2. Coefficients material properties as a function of temperature for Si3N4 and SUS304 

Materials Properties 0
P  

1
P
−

 
1
P  2

P  
3
P  

Si3N4 
c
E (Pa)  348.43e+9 0 -3.07e-4 2.160e-7 -8.964e-11 

c
(1/K)  5.8723e-6 0 9.095e-4 0 0 

SUS304 
m
E (Pa)  201.04e+9 0 3.079e-4 -6.534e-7 0 

m
(1/K)  12.33e-6 0 8.086e-4 0 0 

 

 

 
Figure 2. Comparison of the frequency ratio of the 

piezoelectric FGM beam with variation of the volume 

fraction n 

 

 

 
Figure 3. Comparison of the frequency ratio of the 

piezoelectric FGM beam under electrical load 

 
Figure 4. Comparison of the frequency ratio of the 

piezoelectric FGM beam under thermal load 

 

 

3. 2. Numerical Results and Discussion       The 

numerical results presented in this section are obtained 

for embedded beams resting on two supports. The 

positions of the supports are chosen as follows: 
1

1

3
 = , 

1

2

3
= . Figure 5 shows the typical shape of the first four 

modes of an isotropic beam. However, Figure 6 uses the 

current formula to present the shape of the first non-

linear mode of the piezoelectric FGM, where the 

volume fraction of n 1= , the thermal charge of 

c
T 300K=  and the electrical charge of V 0V= . It can be 

clearly seen in Figure 6 that for different vibration  
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Figure 5. The first normalized linear modes of a clamped 

beam resting on two simple supports 

 

 

 
Figure 6. The first normalized non-linear mode of 

piezoelectric FGM beam, which rests on two simple supports 

and has several vibration amplitudes values 

 

 

amplitudes, the effect of geometrical non-linearity can 

be observed. 

As shown in Figures 7-10, in the case of a non-linear 

forced-vibration system, the resonance curve shows the 

jump phenomenon [40]. This behavior indicates that as 

the excitation frequency increases or decreases, the 

amplitude of the vibration may increase or decrease. 

This leads to the creation of a frequency range in which 

there are three amplitudes for a given frequency, 

resulting in frequency jumps. In this part of the 

numerical analysis, two typical excitations are verified, 

namely that the harmonic force uniformly distributed 

along the length of the beam is given by (a), while (b) 

presents the case of a force concentrated in the center of 

the beam. All frequency response curves show that the 

resonance area of the concentrated harmonic force is 

wider than that of the uniformly distributed harmonic 

force. In fact, this behavior indicates that the way to 

widen the resonance band is to add stiffness 

characteristics. A hardening or softening stiffness can 

produce the wider resonant frequency band [41].  As 

shown in Figures 7-10, the action of the concentrated 

harmonic force causes the widening of the resonant 

frequency band. In other words, beams subjected to 

concentrated harmonic forces exhibit a softening 

behavior compared to beams subjected to uniformly 

distributed harmonic forces. For the three excitation 

levels corresponding to F = 50, 500 and 1000, Figures 

7a and 7b show the influence of the uniformly 

distributed harmonic excitation and the concentrated 

harmonic force on the amplitude-frequency response 

curve of the beam, respectively. In these figures, we can 

see that the peak amplitude increases with excitation. In 

addition, for higher excitation values, the frequency 

range of the solution is wider. Figure 8 shows the effect 

of thermal loading on the amplitude-frequency response 

curve when the force is set to F = 500. The results show 

that as the thermal load increases, the amplitude of the 

frequency response decreases, while the amplitude-

frequency curve tends to the right. In fact, this behavior 

indicates that the presence of non-linear terms can bend 

the amplitude-frequency response curve. In addition, as 

the temperature decreases, the hardening effect is 

greatly enhanced. Therefore, it can be deduced that 

thermal loading has a significant influence on the 

frequency response and the hardening of the beam. 

Figure 9 shows the effect of the volume fraction on the 

resonance response when the force is set at F=500. As 

shown in Figures 9a and 9b, for both types of excitation, 

an increase in the volume fraction index leads to an 

increase in the dimensionless frequency and a decrease 

in the maximum amplitude. Figure 10 shows the effect 

of the electrical voltage on the forced dynamic response 

of the beam when the force is set at F = 500 and the 

volume fraction is set at n 1= .  

 

 

 

 
Figure 7. Resonance curves of three levels of excitation 



2394 Y. El khouddar et al / IJE TRANSACTIONS B: Applications  Vol. 34, No. 11, (November 2021)    2387-2397                                   

 

 

 
Figure 8. Resonance curves of thermal loads 

 

 

 

 
Figure 9. Resonance curves with different volume fraction 

values 

 

 
Figure 10. Resonance for different values of the electric 

charge 

 

 

Obviously, since the value of the piezoelectric strain 

constant is much smaller than the coefficient of thermal 

expansion, the variation of the electric voltage has little 

effect on the resonance response curve, and the same 

phenomenon is observed in Figure 3. In addition, Figure 

10 shows the unstable region of the non-linear forced 

vibration, in which the discontinuous part is the unstable 

boundary, the solution between the boundaries is 

unstable and the other regions are stable. In fact, this 

behavior indicates that the amplitude number varies 

with the type and value of the external excitation 

frequency. According to the forced non-linear response, 

the presence of regions with multiple values will cause a 

jump phenomenon. In the case of uniformly distributed 

external excitation, the unstable region is offset from the 

concentrated excitation. 

 

 

4. CONCLUSIONS 
 
On the basis of Euler-Bernoulli's beam theory and von 

Kármán's displacement-deformation relationship, we 

have studied the free vibration and the geometrically 

non-linear forced vibration of the piezoelectric FGM 

beam under the action of a thermoelectric field. The 

Hamiltonian principle and spectral analysis are used to 
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obtain the guiding equations that control the free and 

forced non-linear behavior. The latter was adopted for 

the case of a uniform distribution over the length of the 

beam and also for the case of a force concentrated in the 

center of the beam. In addition, the analytical response 

of the non-linear forced vibration is obtained by 

introducing an approximation function based on the 

multimode method close to the main mode. This 

approximation makes it possible to obtain the dynamic 

behavior of beams resting on several supports. Then, the 

methods used in this study are verified by referring to 

the results of the literature. Finally, the numerical results 

revealed an impact on the resonance curve through 

several  variances: the volume fraction index, the 

thermal load, the effect of the beam supports and the 

thermal characteristics of the constituent materials. The 

above analysis clearly highlights the following points: 

• In the resonance response curve, an increase in the 

distributed or concentrated harmonic excitation 

force applied to the piezoelectric FGM beam causes 

the curve to gradually increase as the frequency 

increases, and this increase in force also widens the 

resonance curve. 

• As the temperature decreases, the ratio of non-

linear to linear frequency increases, and the 

amplitude-frequency response curve shows an 

improvement in peak amplitude. 

• As the volume fraction increases, the amplitude of 

the forced vibration system gradually increases. 

• Compared to the thermal load, the electrical load 

has little effect on the behavior of free and forced 

non-linear vibrations. The results also confirmed 

that the addition of reinforcing mounts has an 

important influence on the non-linear vibration 

behavior of the piezoelectric FGM beam. 
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Persian Abstract 

 چکیده 

ارتعاشی غیر خطی ن  ای از یک  نده  کار یک مطالعه  تعداد دلخواه  سی  پیوندی روی سطح واقع در  پیزوالکتریک  الیاف  تقویت می کند که توسط  پرتو درجه بندی عملکردی را 

ریه پرتو  نظز  زیه و تحلیل طیفی و با استفاده اپشتیبانی ، تحت نیروهای تحریک و تغییرات ترموالکتریک تقویت شده است. فرمول غیر خطی بر اساس اصل همیلتون همراه با تج

حالت غالب داده می  برنولی ساخته شده است. در مورد پاسخ اجباری غیر خطی ، نتایج عددی طیف گسترده ای از دامنه ها بر اساس روش چند مدی تقریبی نزدیک به  -اویلر

بسیار مطابقت دارد. همچنین باید توجه داشت که بار    شده های گزارش  هدادهایی آورده شده است و نتایج با  شود. به منظور آزمایش روشهای پیاده سازی شده در این مطالعه ، مثال

دینامیکی  پاسخ  در  زیادی  تأثیر  ها  گاه  تکیه  تعداد  و  هارمونیک  نیروی   ، ماده  حرارتی  ، خصوصیات  سازه  کسر حجمی   ، الکتریکی  بار   ، دینامیکی ساختار    حرارتی  غیر خطی 

 .است یک دارای درجه بندی عملکردیپیزوالکتر

 


