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A B S T R A C  
 

 
 

The main challenge in blood supply chain is the shortage and wastage of blood products. Due to the 

perishable characteristics of this product, saving a large number of blood units on inventory causes the 

spoil of these limited and infrequent resources. On the other hand, a lack of blood may lead to the 
cancellation of health-related critical activities, and the result is a potential increase in mortality in 

hospitals. In this paper, an integer programming model was proposed to minimize the total cost, shortage, 

and wastage of blood products in Namazi hospital by considering the different types of blood groups. 
The parameters in the real-world are uncertain, and this problem will be examined in the paper. The 

robust fuzzy possibilistic programming approach is presented, and a numerical illustration of the Namazi 

hospital is used to show the application of the proposed optimization model. Sensitivity analysis is 
conducted to validate the model for problems such as certainty level, coefficient weight, and penalty 

value of the objective function in the robust fuzzy possibilistic programming. The numerical results 

imply the model is able to control uncertainty and the robustness price is imposed on the system; 
therefore, the value of the objective function in the robust fuzzy possibilistic is 80% lower than 

probabilistic.  

doi: 10.5829/ije.2021.34.06c.13
 

 

NOMENCLATURE   

Indeces 𝑐𝑝𝑢𝑡𝑓  Maximum capacity of the hospital for blood group f in period t 

𝑖 Production life span 𝑀 Big number 

𝑡 Time period 𝜃𝑖𝑡𝑓 
The fraction of hospital blood orders at age i days, period t and 

the blood group f          0 ≤ 𝜃(𝑖.𝑡.𝑓) ≤ 1 

𝑓 Blood groups Variables 

Parameters 𝑠𝑠𝑖𝑡𝑓  Confidence in the blood group f in period t with the age of i day 

𝑝̃ Shortage cost 𝑢𝑡𝑓 The amount of lesions in the blood group f in period t 

𝑐̃ Purchasing cost 𝑄𝑡𝑓 The level of the blood group f deficiency in the period t 

𝑤̃ Wastage cost 𝜗𝑖𝑡𝑓 
End-of-life inventory of the blood group f in period t with the 

age of i day 

ℎ̃ Holding cost 𝑂𝑡𝑓 The rate of hospital orders to the blood group f in the period t 

𝐷𝑡𝑓̃ The demand of hospital blood group f in period t 𝐸𝑖𝑡𝑓 
The blood group f received at the beginning of period t with the 

age of i day 

𝑐𝑎𝑝̃𝑡𝑓 Blood centers' capacity in period t and the blood group f 𝑌𝑖𝑡𝑓 
A binary variable that is 1 if the patient satisfies blood from the 
blood group f in the period t with the age of i days, otherwise 0. 

 
1. INTRODUCTION1 
 

The blood supply chain is one of the few supply chains 

that are also in the supply sector. In addition, it is in high 
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uncertainty in the demand segment. This complicates the 

management and planning of current affairs in this supply 

chain [1]. On the other hand, blood products are related 

to the health and lives of people and management of them 
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has a high sensitivity; so, that the occurrence of the 

smallest disruption in the management of supply chain 

issues will result in irreparable damage [2]. In recent 

years, the blood supply chain has been a focus of 

attention due to the importance of this vital product and 

scarce in health systems. Providing healthy blood and 

enough and also its management has been from particular 

concern for the human race, hence the collection and 

management of blood distribution which is proposed in 

the form of supply chain management requires 

comprehensive and accurate management and planning. 

The blood supply chain has complexities so that it is 

distinguished from the supply chain of ordinary 

commodities.  Blood is one of the most crucial corrosive 

substances in nature, which is closely related to the lives 

of humans. One of the most important reasons for blood 

and blood products is its human origin, and artificially 

can not be produced. In addition, blood products such as 

red blood cells, platelets, and plasma have a different life 

span and require special conditions for maintenance. On 

the other hand, the blood supply chain, which involves 

processes for collection, production, storage, and 

distribution of blood and blood products from donors to 

blood recipients, is associated with uncertainty. This 

uncertainty in the supply and demand process is evident 

because blood supply from donors is relatively 

unplanned and uncertain, and demand for the product is 

not stable. Uncertainty in supply chain issues plays a 

crucial role in economic performance. Therefore, 

adjustment of supply and demand in the blood supply 

chain requires the design of the appropriate supply chain 

network to supply blood and blood derivatives. 

Robust optimization optimizes at worst so that a 

robust approach to optimization problems has been used 

since the early 1970s. It has recently been studied widely 

[3]. Alem and Morabito [4] cited two reasons for using 

robust optimization. At first robust optimization is easier 

than possible approaches to solve the model. Also, given 

that we do not need explicit knowledge of data under 

cognitive uncertainty, historical data, and in some cases, 

the experiences of decision-makers can be used to infer 

the uncertainty interval. The reasons for the superiority 

of robust possibilistic programming are compared to 

possibilistic programming as follows [5]. 

1. In robust optimization, the final answer has the 

stability of being optimal and stable.  

2. In robust optimization, the level of confidence in 

satisfying the constraints is determined by the model 

itself and its value is optimal.  

3. According to the deviations of the objective 

function due to the uncertainty of the parameters will be 

prevented heavy and irreparable costs for managers and 

organizations. However, it is not paid much attention to 

the mentioned cases in the possibilistic programming 

approach [6]. Therefore this paper proposes robust 

possibilistic programming (RPP) to solve the problem, 

which has a considerable superiority when compared to a 

certain model. 

In the next section, the literature review is addressed. 

The problem definition and mathematical model are 

presented in sections 3 and 4, respectively. The 

computational results and sensitivity analysis are 

mentioned in section 5. The conclusion and future 

research of the paper are finally indicated in section 6. 

 

 

2. LITERATURE REVIEW 
 

Brief literature is reviewed about the blood supply chain 

with solution methods and algorithms that are used to 

solve the problem. Ghandforoush and Sen [7] developed 

a review of some of the tactical and operational aspects 

of the collection, production, control of the inventory, the 

policy of shipment blood products, and delivery 

decisions. Haijema et al. [8] investigated a  dynamic 

Markov and a simulation approach which two types of 

demand are presented in accordance with different types 

of patients and scarcity and waste is minimized. 

Ghandforoush and Sen [7] presented a system of initial 

decision support according to an unconfirmed integer 

programming in order to help regional blood transfusion 

centers to generate and collect platelets daily. The aim is 

to minimize the total daily cost including collection, 

production, and costs of shortages. They concluded that 

the supply and production should be on demand. Osorio 

et al. [9] have paid little attention to the relationship 

between the various stages of the supply chain and many 

single-level papers have been reviewed. Mansoori et al. 

[10] presented a bi-objective location-allocation model 

for blood supply under uncertainty. The objectives are 

minimizing the blood shortage in blood centers and also 

minimizing the operational costs including cost of 

transporting temporary blood facilities and the cost of 

blood collection and transportation in a multi-period 

context. They used the robust optimization approach in 

the model. Civelek et al. [11] presented a periodic 

inventory management system for platelet inspection so 

that demand varies from one age to another. The aim is 

to minimize the inventory, wastage, and shortage costs. 

Abdulwahab and Wahab [12] proposed a collection of 

methods used for vendor problems and linear 

programming in the blood bank inventory model and 

other methods of inventory. Abbasi and Hosseinifard 

[13] presented a model to evaluate the release of platelets 

and red blood cells in the blood supply service by using 

queuing theory. Pishvaee and Torabi [14] specified that 

traditional models can not apply the precision and logic 

of classical mathematical alone. Asadpour et al. [2] 

addressed a blood supply chain network with backup 

facilities and expiration date. They proposed a bi-
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objective Mixed Integer Programming where the 

objectives are to minimize the total cost and detrimental 

environmental impacts.    

The model is not real when uncertainty is ignored due 

to its structure. Conceptual concepts can not show some 

uncertainties; therefore, the theory of fuzzy sets has been 

introduced to express the uncertainties since 1980. Fuzzy 

concepts are the creation of the ability to definition 

ambiguous, inattentive, and unpleasant parameters that 

are defined based on personal beliefs [15]. Tanthatemee 

et al. [16] presented a single-product fuzzy inventory 

control system and a permanent overview. The presented 

model is based on the fuzzy logic control system for 

uncertain demand and resource availability. Selim and 

Ozkarahan [17] proposed an integrated multi-objective 

fuzzy scheduling model for designing a chain-of-

distribution network. Handfield et al. [18] developed a 

model (Q, r) that Fuzzy concepts have been used to 

illustrate uncertainty of sources in a supply chain. 

Rajendran and Ravindran [19] developed stochastic 

models under uncertain demand for a single hospital. The 

models aimed to propose ordering policies to reduce 

shortage, wastage and purchase for different cost 

settings. Dilano et al. [20] proposed a two-stage 

stochastic programming model for explaining optimal 

periodic review policies for red blood cells inventory 

management. The objective is to minimize the 

operational costs, shortage and wastage by taking into 

account perishability and uncertain demand. Oserio et al. 

[21] developed integrated simulation-optimization model 

to account for uncertain supply and demand, blood group 

proportions, shelf life constraints, different collections 

and production methods in the blood supply chain. 

Pishvaei et al. [22] presented a robust programming 

model for a supply chain network with social 

responsibility. They proposed a new approach and 

implemented the model under different assumptions and 

compared the performance of them. Zahiri et al. [23] 

proposed a model of robust possibilistic programming for 

location-allocation of organ transplant centers under the 

uncertainty. They used minimal costs to enhance the 

impact of their network design. Safaei et al. [24] 

formulated a closed-loop supply chain (CLSC) for the 

cardboard recycling network under the uncertainty of 

demand to maximize total profit. They used a robust 

optimization approach in the proposed mixed integer 

linear programming (MILP) model to combat 

uncertainty. Selma et al. [25] proposed a general MILP 

model for the multi-objective CLSC network due to the 

uncertainty of product demand. Haghjoo et al. [26] 

presented a a dynamic robust location–allocation model 

for designing a blood supply chain network under facility 

disruption risks and uncertainty in a disaster situation. 

Eskandari-Khanghahi et al. [27] developed a possibilistic 

optimization model for a multi-period and multi-

objective sustainable blood supply chain with uncertain 

data where the objectives are to minimize the total cost, 

environmental effects and maximize the sicial effects. 

Kazemi et al. [28] addressed blood inventory-routing 

problem under uncertainty and developed a mixed 

integer programming formulation for the problem. Zahiri 

and Pishvaee [29] studied blood supply chain network 

design under uncertainty and developed a bi-objective 

mathematical programming model which minimizes the 

total cost as well as the maximum unsatisfied demand. 

Ghahremani-Nahr et al. [30] proposed a MINLP 

location-allocation model to design a closed-loop green 

supply chain under uncertainty with robust fuzzy 

mathematical programming and solved the model with 

the Wall optimization algorithm. 

Although some researchers have studied uncertainty 

in their problems, but this uncertainty is limited to some 

parameters like demand. In this research, all parameters 

such as cost, demand and capacity are assumed uncertain 

and trapezoidal fuzzy distribution is considered for the 

uncertain parameters. A robust fuzzy possibilistic 

programming are used to address the uncertainty. Also, 

according to literature review consideration of all blood 

groups and expiration date simultaneously is the first 

study in this filed.   

 

 

3. PROBLEM DEFINITION 
 

In this paper, a blood supply chain considering different 

types of blood groups (O+, O-, A+, A, B+, B, AB+, AB) 

and expiration date has been designed simultaneously. 

This makes the demand for blood in the hospital more 

efficient and can prevent the risk of blood transfusions to 

patients with a variety of blood groups. It also simplifies 

blood demand and the blood is delivered to the hospital 

from the blood centers without the test of compatibility 

so that the hospital performs the test.The supply chain of 

blood consists of three levels. The first level is donors 

who want to donate the blood to a mobile or fixed unit of 

the blood transfusion organization in the city. The second 

level in the chain is the test and production of blood 

products that are performed by blood test and blood test 

laboratories. The third level of the chain is the 

distribution of blood products.     

In order to design the supply chain, an initial 

mathematical model is proposed to minimize the total 

cost, shortage, and wastage in blood supply chain of 

Namazi hospital by considering the different types of 

blood groups. The model has non-deterministic 

parameters. Therefore, the primary model is transformed 

into a model with some non-deterministic parameters. A 

chance constraint approach and robust possibilistic 

programming are used to address the uncertainty. After a 

full explanation of the approach, we introduce a new 

definitive and real world model that is called the second 

model. The model includes the objective function and the 
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constraints of the first model but the trapezoidal fuzzy 

distribution is considered for the uncertain parameters of 

the problem. The assumptions considered in the model of 

the problem are as follows: 

• all blood groups are considered 

• The capacity of blood centers is limited. 

• The delivery time for blood supply is zero. 

• The age of blood transmitted from the blood 

transfusion organization is known and changes over 

time. 

• The life of red blood cells is limited and it is 35 days 

which is 2 days to test. 

• The policy used to send the blood is the original 

FIFO. 

• If the demand is not met, we will be in deficit. 

• If the blood expires, we will have a lost cost. 

• The reviewed model is a single product and a multi-

period. 

• The maximum hospital blood bank capacity is 

predetermined. 

 

3. 1. Mathematical Model           In this section, a 

nonlinear integer programming model is derived from 

Gunpinar and Centeno [30]. In the second model, some 

parameters in the objective function, the technical 

coefficients, and the right values of some of the 

constraints are ambiguous therefore it is necessary to 

further explain. The definite model that is presented in 

this section is a nonlinear programming model and will 

be converted to a linear model. The proposed model is 

known NP-hard. Therefore, several algorithms are 

proposed to reduce the solution time for the model that 

will be described completely in separate sections. The 

mathematical model are presented and described as 

follows: 
 

Objective function 

Min z = ∑ ∑ 𝐶̃ ∗ 𝑂𝑡𝑓
8
𝑓=1

𝑇
𝑡=1 + ∑ ∑ ∑ 𝐻̃ ∗8

𝑓=1
𝑇
𝑡=1

𝐼
𝑖=1

𝜗𝑖𝑡𝑓 + ∑ ∑ 𝑊̃ ∗ 𝑢𝑡𝑓 + ∑ ∑ 𝑃̃ ∗ 𝑄𝑡𝑓
8
𝑓=1

𝑇
𝑡=1

8
𝑓=1

𝑇
𝑡=1   

(1) 

Constraints 

(2) ∑ 𝑂(𝑡.𝑓)
8
𝑓=1 ≤ ∑ 𝐶𝑎𝑝(𝑡.𝑓)

8
𝑓=1     ∀𝑡  

(3) ∑ (𝑉𝑖,𝑡−1.𝑓 + 𝑆𝑆𝑖,𝑡.𝑓 + 𝑒𝑖,𝑡.𝑓)𝑖 ≤ 𝑐𝑝𝑢𝑡.𝑓    ∀𝑡, 𝑓  

(4) 𝐸(𝑖.𝑡.𝑓) = 0                    ∀𝑡. 𝑓. 𝑖 = 1.2 

(5) 𝐸(𝑖.𝑡.𝑓) = 𝑂(𝑡.𝑓) ∗ 𝜃(𝑖.𝑡.𝑓)               ∀𝑡. 𝑓. 𝑖 ≥ 3 

(6) 𝑌(𝑖.𝑡.𝑓) ≥ 𝑌(𝑖−1.𝑡.𝑓)             ∀𝑡. 𝑓. 𝑖 ≥ 3 

(7) 
𝐷(𝑡.𝑓) = ∑ [(𝜗(𝑖−1.𝑡−1.𝑓) + 𝐸(𝑖.𝑡.𝑓)) ∗ 𝑌(𝑖.𝑡.𝑓) −𝐼

𝑖=3

𝑠𝑠(𝑖.𝑡.𝑓)] + 𝑄(𝑡.𝑓)                 ∀𝑡. 𝑓 

(8) 
(𝑌(𝑖.𝑡.𝑓) − 𝑌(𝑖−1.𝑡.𝑓)) ∗ (

𝜗(𝑖−1.𝑡−1.𝑓) +

𝐸(𝑖.𝑡.𝑓)
) ≥ 𝑠𝑠(𝑖.𝑡.𝑓)   

∀𝑡. 𝑓. 𝑖 ≥ 3 

(9) 𝐷(𝑡.𝑓) − ∑ [𝜗(𝑖−1.𝑡−1.𝑓) + 𝐸(𝑖.𝑡.𝑓)] ≤ 𝑄(𝑡.𝑓)
𝐼
𝑖=3     ∀𝑡. 𝑓 

(10) 𝑌(𝑖.𝑡.𝑓) = 0                 ∀𝑡. 𝑓. 𝑖 = 1.2 

(11) 
𝜗(𝑖.𝑡.𝑓) = (1 − 𝑌(𝑖.𝑡.𝑓)) ∗ (𝜗(𝑖−1.𝑡−1.𝑓) + 𝐸(𝑖.𝑡.𝑓)) +

(𝑌(𝑖.𝑡.𝑓) − 𝑌(𝑖−1.𝑡.𝑓)) ∗ 𝑠𝑠(𝑖.𝑡.𝑓)                  ∀𝑡. 𝑓. 𝑖 ≥ 3 

(12)  𝜗(𝑖.𝑡.𝑓) = 0            ∀𝑡. 𝑓. 𝑖 = 1.2 

(13) 𝜗(𝑖.0.𝑓) = 0                    ∀𝑖. 𝑓 

(14) 𝑈(𝑡.𝑓) = 𝜗(35.𝑡.𝑓)                  ∀𝑡. 𝑓 

(15) 𝑠𝑠(𝑖.𝑡.𝑓).  𝑈(𝑡.𝑓).  𝑄(𝑡.𝑓).  𝜗(𝑖.𝑡.𝑓).  𝑂(𝑡.𝑓).  𝐸(𝑖.𝑡.𝑓)  ∈ Z+ 

(16) 𝑌(𝑖.𝑡.𝑓) ∈ {0.1} 

The objective function of the problem consists of the 

cost of maintenance, waste, shortage, and purchasing 

shown in equation (1).  Equation (2) indicates that the 

capacity of the blood center (supplier) is limited so that 

hospital demand cannot exceed the capacity of the blood 

centers. Equation (3) ensures that the amount of blood in 

the hospital cannot exceed the hospital's blood bank 

capacity. Constraints (4) and (5) ensure that the hospital 

never receives a unit of blood that one or two days left in 

its life span (since it takes 2 days to complete the test in 

a blood bank). Equation (6) shows the FIFO policy for 

blood delivery. Equation (7) responding to demand when 

blood supply is more than demand. In this case, the 

amount of blood in the system for all ages of blood in 

each period and each blood group is checked to see if it 

is used and we reduce the amount of confidence, then 

reduce the amount of deficiency which is continuously 

checked into the system to this value. Equation (8) 

implies that the value of the quantitative variable of 

confidence does not exceed the available blood units in 

its age group. Constraint (9) is intended to control the 

amount of blood deficiency and constraint (10) shows the 

allocation of blood units to each age group and also the 

amount of blood received from each blood group in each 

period. Equation (11) shows the level of inventory of the 

end of the blood cycle for each age group in each period. 

Constraint (12) ensures that two days of blood is not 

available in the stock. Constraint (13) specifies that no 

inventory is available at the beginning of the analysis 

period. Equation (14) shows the rate of hospital waste at 

the end of each course. The rest of the equations show the 

condition of the variables and parameters. 
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3. 2. Linearization of the Model          Equations (7), 

(8) and (11) are nonlinear which leads to the complexity 

of the model. However, using the auxiliary variables and 

applying some additional constraints, the extracted 

model can be converted to the linear model. The 

linearization procedure is described below.  
There is a continuous variable x and binary variable y 

so that variable α will be defined as nonlinear variable 

from multiply x by y according to Equation (17). 

𝛼 = 𝑋 ∗ 𝑦 (17) 

For the linearization of the Equation (17), three 

constraints are added instead of it as follows [30]. The 

three add-ons to the model ensure that if y is zero, the 

variable α will equal to zero. Otherwise, if y is equal one 

then the variable α will equal x according to Equations 

(18) to (20). The limitations are linearized that Gupte et 

al., is using [31]. 

α ≤ 𝑀 ∗ 𝑦          (18) 

α ≤ 𝑋                                   (19) 

α ≥ 𝑋 − 𝑀(1 − 𝑦)          (20) 

 

3. 3. Chance Constraint Programming             In order 

to face uncertainty, several approaches have been 

developed in mathematical optimization problems such 

as randomization, fuzzy optimization, robust 

optimization, and hybrid approaches. In this section, the 

model and concepts are derived from the paper by 

Pishvaee and Torabi [14] Fuzzy programming models 

use fuzzy confidence coefficients and membership 

functions to express the lack of knowledge about the 

parameters and are divided into possibilistic and flexible 

programming. 
In probable planning, the lack of knowledge about the 

exact amounts of the model parameters with probabilistic 

distribution functions is modeled using available target 

data and decision-making knowledge. In flexible 

programming, the objective function and constraints are 

used to control the uncertainty of the flexible value, and 

modeling will be based on fuzzy sets or priorities. In the 

paper, probabilistic planning of the limits of chance is 

used to address the uncertainty of the various parameters 

in the problem. 

The chance constraint method is one of the primary 

techniques for solving optimization problems under 

various uncertainties. This formulation method is an 

optimization problem that assures that the probability of 

a specific limit is higher than a certain level. In other 

words, it restricts space to a high level of confidence. In 

particular, the distribution of trapezoidal probability 

according to Figure 1, is used to represent non-

deterministic parameters in the proposed model. For a 

more detailed and simplistic introduction, the compact 

 
Figure 1. trapezoidal fuzzy distribution 

 

 

form of the proposed model is presented as follows: 

 (21) 
Objective function 

Min Z fy cx = +  

Subject to: 

Ax d

Bx d

Sx Ny



=



  

, , 0,1i t fY      

x ≥ 0 

 

Assume that the vector f (fixed cost) is a definite 

parameter, and the vectors c (variable costs) and d 

(hospital demand) and the matrix of coefficients N 

(capacity of facilities) are unknown parameters of the 

problem. To build a basic fuzzy programming curve, 

chance constraint, we use the "expected value" factor to 

non-deterministic model parameters of the objective 

function and the necessity (Nec) scale for modeling 

losing constraints. The Nec scale can be applied directly 

to convert the fuzzy odds limits to equivalent equations.  

 Subject to: 

(22) 

𝑁𝑒𝑐{𝐴𝑥 ≥ d̃} ≥ αm         ∀ 𝑚 ∈ 𝑀  

𝑁𝑒𝑐{𝐵𝑥 = d̃} ≥ αm         ∀ 𝑚 ∈ 𝑀 

𝑁𝑒𝑐{𝑆𝑥 ≤ Ñy} ≥ αm         ∀ 𝑚 ∈ 𝑀 

𝑌 ∈ {0,1} 

𝑥 ≥ 0 

Since the objective function and constraints have non-

deterministic parameters and are considered by fuzzy 

distributions, and the constraints with non-deterministic 

parameters must be formed with the minimum level of αi, 

the model Definite can be defined as follows: 

 Objective function 

 Min E[Z] = fy + (
c(1)+c(2)+c(3)+c(4)

4
) x 
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 (23) 

Subject to: 

Ax ≥ (1-αm) d(3) + αmd(4)      

Bx ≤ (
αm

2
) d(3)+(1 −

αm

2
) d(4) 

Bx ≥ (
αm

2
) d(2)+(1 −

αm

2
) d(1)  

Sx  ≤ [(1-αm) N(2)+αmN(1)]Y 

Y ∈ {0,1} 

x ≥ 0 

According to the said articles, the definitive equivalent 

model of the proposed model will be as follows: 

(24) Nec{∑ 𝑂(𝑡.𝑓)
8
𝑓=1 ≤ ∑ 𝐶𝐴𝑃(𝑡.𝑓)

̃8
𝑓=1  } ≥ α1 

(25) 
Nec{𝐷(𝑡.𝑓)̃ = ∑ [(𝜗(𝑖−1.𝑡−1.𝑓) + 𝐸(𝑖.𝑡.𝑓)) ∗𝐼

𝑖=3

𝑌(𝑖.𝑡.𝑓) − 𝑠𝑠(𝑖.𝑡.𝑓)] + 𝑄(𝑡.𝑓)} ≥ α2 

(26) 
Nec{𝐷(𝑡.𝑓)̃ ≤ 𝑄(𝑡.𝑓) + ∑ (𝜗(𝑖−1.𝑡−1.𝑓)

𝐼
𝑖=3 +

𝐸(𝑖.𝑡.𝑓))} ≥ α3   

The definition of the limits of this section is the same as 

in the previous section, and we included uncertainty in 

only three constraints that included demand and capacity. 

The objective function, like the last section, minimizes 

the available costs. 

Objective function  

𝑀𝑖𝑛𝐸[𝑍] = ∑ ∑ (
𝐶1+𝐶2+𝐶3+𝐶4

4
)8

𝑓=1
𝑇
𝑡=1 ∗ 𝑂𝑡𝑓 +  

∑ ∑ ∑ (
𝐻1+𝐻2+𝐻3+𝐻4

4
) ∗ 𝜗(𝑖.𝑡.𝑓)

8
𝑓=1

𝑇
𝑡=1

𝐼
𝑖=1   

+ ∑ ∑ (
𝑊1+𝑊2+𝑊3+𝑊4

4
) ∗ 𝑢(𝑡.𝑓)

8
𝑓=1

𝑇
𝑡=1 +

∑ ∑ (
𝑃1+𝑃2+𝑃3+𝑃4

4
) ∗ 𝑄(𝑡.𝑓)

8
𝑓=1

𝑇
𝑡=1   

(27) 

Subject to:  

∑ 𝑂(𝑡.𝑓)
8
𝑓=1 ≤ [(1 − 𝛼1) ∗ ∑ 𝐶𝐴𝑃2

8
𝑓=1 + 𝛼1 ∗

∑ 𝐶𝐴𝑃1
8
𝑓=1 ]             ∀𝑡 

(28) 

∑ (𝑉𝑖,𝑡−1.𝑓 + 𝑆𝑆𝑖,𝑡.𝑓 + 𝑒𝑖,𝑡.𝑓)𝑖 ≤ 𝑐𝑝𝑢𝑡.𝑓    ∀𝑡, 𝑓  (29) 

𝐸(𝑖.𝑡.𝑓) = 0       ∀𝑡. 𝑓. 𝑖 = 1.2  (30) 

𝐸(𝑖.𝑡.𝑓) = 𝑂(𝑡.𝑓) ∗ 𝜃(𝑖.𝑡.𝑓)        ∀𝑡. 𝑓. 𝑖 ≥ 3 (31) 

𝑌(𝑖.𝑡.𝑓) ≥ 𝑌(𝑖−1.𝑡.𝑓)           ∀𝑡. 𝑓. 𝑖 ≥ 3 (32) 

∑ [𝛼(𝑖.𝑡.𝑓) + 𝛽(𝑖.𝑡.𝑓) − 𝑠𝑠(𝑖.𝑡.𝑓)] + 𝑄(𝑡.𝑓)    ≤𝐼
𝑖=3

[(
𝛼2

2
) ∗ 𝐷3(𝑡.𝑓) + (1 −

𝛼2

2
) ∗ 𝐷4(𝑡.𝑓)]      ∀𝑡. 𝑓. 𝑖 ≥ 3 

(33) 

∑ [𝛼(𝑖.𝑡.𝑓) + 𝛽(𝑖.𝑡.𝑓) − 𝑠𝑠(𝑖.𝑡.𝑓)] + 𝑄(𝑡.𝑓)    ≥𝐼
𝑖=3

[(
𝛼2

2
) ∗ 𝐷2(𝑡.𝑓) + (1 −

𝛼2

2
) ∗ 𝐷1(𝑡.𝑓)]     ∀𝑡. 𝑓. 𝑖 ≥ 3 

(34) 

𝛼(𝑖.𝑡.𝑓) + 𝛽(𝑖.𝑡.𝑓) − 𝜇(𝑖.𝑡.𝑓) − 𝜑(𝑖.𝑡.𝑓) ≥ 𝑠𝑠(𝑖.𝑡.𝑓)          

∀𝑡. 𝑓. 𝑖 ≥ 3 
(35) 

[(1 − 𝛼3) ∗ 𝐷3(𝑡.𝑓) + 𝛼3 ∗ 𝐷4(𝑡.𝑓)] ≤ 𝑄(𝑡.𝑓) +

∑ [𝜗(𝑖−1.𝑡−1.𝑓) + 𝐸(𝑖.𝑡.𝑓)]  𝐼
𝑖=3          ∀𝑡. 𝑓 

(36) 

𝑌(𝑖.𝑡.𝑓) = 0         ∀𝑡. 𝑓. 𝑖 = 1.2 (37) 

𝜗(𝑖.𝑡.𝑓) = 𝜗(𝑖−1.𝑡−1.𝑓) + 𝐸(𝑖.𝑡.𝑓) − 𝛼(𝑖.𝑡.𝑓) − 𝛽(𝑖.𝑡.𝑓) +

∆(𝑖.𝑡.𝑓) − 𝛾(𝑖.𝑡.𝑓)     ∀𝑡. 𝑓. 𝑖 ≥ 3 
(38) 

  𝜗(𝑖.𝑡.𝑓) = 0        ∀𝑡. 𝑓. 𝑖 = 1.2 (39) 

𝜗(𝑖.0.𝑓) = 0     ∀𝑡. 𝑓. 𝑖 = 1.2 (40) 

𝑈(𝑡.𝑓) = 𝜗(35.𝑡.𝑓)       ∀𝑡. 𝑓 (41) 

𝑠𝑠(𝑖.𝑡.𝑓).  𝑈(𝑡.𝑓).  𝑄(𝑡.𝑓).  𝜗(𝑖.𝑡.𝑓).  𝑂(𝑡.𝑓). 𝐸(𝑖.𝑡.𝑓).    

 𝛾(𝑖.𝑡.𝑓). ∆(𝑖.𝑡.𝑓).  𝜑(𝑖.𝑡.𝑓). 𝜇(𝑖.𝑡.𝑓).  𝛽(𝑖.𝑡.𝑓).  𝛼(𝑖.𝑡.𝑓) ∈ 𝑍+ 
(42) 

𝑌(𝑖.𝑡.𝑓) ∈ {0.1} (43) 

 

3. 4. Robust Fuzzy Possibilistic        Similar to the 

chance constraint possibilistic model, the first part in the 

objective function is the expected value of z ''E[z]''. The 

second part of the objective function is the difference 

between the maximum and minimum possible values of 

z based on trapezoidal distribution. The method finds the 

desired value for the confidence levels, and the 

confidence levels are considered as a variable. In the 

model, the coefficient γ indicates the significance of the 

difference between the minimum and maximum values 

of the objective function and can be used in the range of 

[0,1]. Therefore, the presence of the section in the target 

function leads to a minimization of the maximum 

deviation of the maximum and minimum optimal values 

of z. It is worth noting that this optimally stable part 

controls the answer to the problem. 
The third part, added to the objective function, 

indicates the level of confidence in any random constraint 

in which the penalty for deviating from the limit values 

is the uncertain parameters. It shows the difference 

between the worst value of the uncertain parameter and 

the value used in the random constraint. Therefore, using 

the part, the condition of the answers will be established. 

It should be noted that in the stable model, the expression 

γ (zmax, E[z]) minimizes the maximum deviation of the 

highest and lowest optimal expected value of the 

objective function, but in some cases, the decision-maker 

only select one of these. Two values of sensitivity 

deviation are shown as follows. 
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𝑚𝑖𝑛 𝐸[𝑍] + 𝛾(𝑧𝑚𝑎𝑥 − 𝐸[𝑧]) + 𝛿(𝑑(4) − (1 −

𝛼)𝑑(3) − 𝛼𝑑(4)) + 𝜑[(𝛽𝑁(1) + (1 − 𝛽)𝑁(2) −

𝑁(1))]  

(44) 

𝐴𝑥 ≥ (1 − 𝛼)𝑑(3) + 𝛼𝑑(4) 

𝐵𝑥 ≤ (
αm

2
) 𝑑3 + (1 −

𝑎𝑚

2
)𝑑4  

𝐵𝑥 ≥ (
αm

2
) 𝑑2 + (1 −

𝑎𝑚

2
)𝑑1 

𝑆𝑥 ≤ [𝛽𝑁(1) + (1 − 𝛽)𝑁(2)] 

𝑇𝑥 ≤ 1 

𝑍𝑚𝑎𝑥 =  𝑓4 ∗ 𝑥 + 𝑐4 ∗ 𝑦 

  𝑥 ≥ 0.   0 ∙ 5 ≤ 𝛼. 𝛽 ≤ 1 

Therefore, the complete model is as follows so that the 

constraints are like 28-43. 

Objective function 

(44) 

𝑀𝑖𝑛𝐸[𝑍] = ∑ ∑ (
𝐶1+𝐶2+𝐶3+𝐶4

4
)8

𝑓=1
𝑇
𝑡=1 ∗ 𝑂𝑡𝑓 +  

∑ ∑ ∑ (
𝐻1+𝐻2+𝐻3+𝐻4

4
) ∗ 𝜗(𝑖.𝑡.𝑓)

8
𝑓=1

𝑇
𝑡=1

𝐼
𝑖=1   

+ ∑ ∑ (
𝑊1+𝑊2+𝑊3+𝑊4

4
) ∗ 𝑢(𝑡.𝑓)

8
𝑓=1

𝑇
𝑡=1 +

∑ ∑ (
𝑃1+𝑃2+𝑃3+𝑃4

4
) ∗ 𝑄(𝑡.𝑓)

8
𝑓=1

𝑇
𝑡=1 + 

𝛾 [∑ ∑ 𝐶4
8
𝑓=1 ∗ 𝑂𝑡𝑓

𝑇
𝑡=1 + ∑ ∑ ∑ 𝐻4 ∗8

𝑓=1
𝑇
𝑡=1

𝐼
𝑖=1

𝜗(𝑖.𝑡.𝑓) + ∑ ∑ 𝑊4 ∗ 𝑢(𝑡.𝑓) + ∑ ∑ 𝑃4 ∗8
𝑓=1

𝑇
𝑡=1

8
𝑓=1

𝑇
𝑡=1

𝑄(𝑡.𝑓)) − ∑ ∑ (
𝐶1+𝐶2+𝐶3+𝐶4

4
)8

𝑓=1 ∗ 𝑂𝑡𝑓
𝑇
𝑡=1 +

∑ ∑ ∑ (
𝐻1+𝐻2+𝐻3+𝐻4

4
) ∗ 𝜗(𝑖.𝑡.𝑓)

8
𝑓=1

𝑇
𝑡=1

𝐼
𝑖=1 +

∑ ∑ (
𝑊1+𝑊2+𝑊3+𝑊4

4
) ∗ 𝑢(𝑡.𝑓) +8

𝑓=1
𝑇
𝑡=1

∑ ∑ (
𝑃1+𝑃2+𝑃3+𝑃4

4
) ∗ 𝑄(𝑡.𝑓)

8
𝑓=1

𝑇
𝑡=1 ]+𝛿1 ∑ ((1 −𝑡.𝑓

𝛼2

2
) 𝑑(4)𝑡𝑓 −

𝛼2

2
𝑑(3)𝑡𝑓 − 𝑑(3)𝑡𝑓)+𝛿2 ∑ (𝑑(2)𝑡𝑓 −𝑡.𝑓

(1 −
𝛼2

2
) 𝑑(1)𝑡𝑓 −

𝛼2

2
𝑑(2)𝑡𝑓)+𝛿3 ∑ (𝑑(4)𝑡𝑓 −𝑡.𝑓

(1 − 𝛼3)𝑑(3)𝑡𝑓 − 𝛼3𝑑(4)𝑡𝑓)+𝛿4 ∑ ((1 −𝑡.𝑓

𝛼1)𝑐𝑎𝑝(2)𝑡𝑓 + 𝛼1𝑐𝑎𝑝(1)𝑡𝑓 − 𝑐𝑎𝑝(1)𝑡𝑓) 

 
 
4. COMPUTATIONAL RESULTS 
 

In this section, a numerical example from the Namazi 

hospital is presented to study the efficiency of the 

proposed model. Both programming and scheduling 

programs are coded with GAMS software using the 

CPLEX solver. It should be noted that all the necessary 

tests were performed on a CORE i5 computer with 1 T of 

RAM. The formulation of the described chain involves a 

large number of definite and non-deterministic 

parameters. Therefore, displaying all parameters is not 

possible due to space constraints. As a result, some 

essential uncertain parameters such as customer demand, 

shortage, holding, wastage, and purchasing costs, the 

capacity of the blood center and maximum hospital 

capacity are presented in Tables 1, 2, and 3, respectively.  

To investigate the effect of the three factors of 

demand, the maximum capacity, and the shortage cost, 

various issues have been considered in which two factors 

are considered constant and the other one is considered 

variable. Figures 2 to 4 show how the objective function 

changes in relation to maximum capacity, demand, and 

shortage cost where scale objective function values 

according to Million. Figure 2 show the objective 

function changes are very high about the amount of 

demand, while the sensitivity of the objective function to 

the maximum capacity is small and negligible based on 

Figure 2. 
 

 

TABLE 1. Fuzzy Demand for each blood group 

Blood group Demand 

O+ (15,22,28.35) 

O- (5,7,9,11) 

A+ (8,12,17,21) 

A- (1,2,3,4) 

B+ (11,15,20,24) 

B- (0,1,2,3) 

AB+ (0,2,4,6) 

AB- (1,2,3,4) 

 

 

TABLE 2. Fuzzy costs 

Purchasing cost (30000,35000,40000,45000) 

Holding cost (3000,4000,5000,6000) 

Wastage cost (3000,5000,7000,9000) 

Shortage cost (400000,500000,600000,700000) 

 

 

TABLE 3. Fuzzy Capacity blood center for each blood group 

Blood group Capacity 

O+ (221,231,241,251) 

O- (190,218,230,240) 

A+ (185,192,200,207) 

A- (175,185,195,205) 

B+ (180,190,200,210) 

B- (170,180,190,200) 

AB+ (143,150,157,202) 

AB- (132,138,144,152) 
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Figure 2. Objective function changes with increasing 

demand 
 

 

 
Figure 3. Objective function changes with increasing 

maximum capacity 
 

 

 
Figure 4. Objective function changes with increasing shortage cost 

 

 

The objective function changes with respect to 

increasing maximum capacity is shown in Figure 3. As 

shown in Figure 4 the objective function increases with 

increasing shortage cost. 

Figure 5 also shows the comparison of the objective 

function obtained from the problem taking into different 

values of 𝛼𝑖. According to the Figure 5, the objective 

function increases with increasing α-values. Based on 

this diagram, it can be concluded that with increasing 

values of  𝛼𝑖, the scope of the restrictions will be smaller, 

and thus the value of the objective function increases. 

 
Figure 5. Objective function changes with increasing αi 

 

 

 
Figure 6. Comparison of the objective function of two 

models 
 

Figure 6 illustrates the value of robust  fuzzy 

possibilistic programming objective function with 

maximum confidence level α is less than the value of 

probabilistic programming objective function with the 

lowest level of penalty γ coefficient. 
 

 

As shown in Table 4 the value of the objective function 

and run time of the problem is escalating  with increasing 

the penalty coefficient. As can be seen, α2 and α3 have a 

value of 0.5 which indicates the high risk of the 

restriction and a low level of confidence. Therefore, the 

decision-maker must be risk-free against this constraint. 

In this case, the decision-maker must consider the 

maximum amount of demand so that we are less deficient 

in a crisis. 

 
 

TABLE 4. Sensitivity analysis on weight factor parameter γ 

𝜹𝟏. 𝜹𝟐. 𝜹𝟑. 𝜹𝟒 = 𝟏𝟎 

𝛄 = 𝟎. 𝟗 𝛄 = 𝟎. 𝟔 𝛄 = 𝟎. 𝟑 

95 
Run time 

(s) 
79 

Run time 

(s) 
60 

Run time 

(s) 

75/99 E[Z] 71/67 E[Z] 66/77 E[Z] 

1 𝛼1 1 𝛼1 1 𝛼1  

0.5 𝛼2 0.5 𝛼2 0.5 𝛼2  

0.5 𝛼3 0.5 𝛼3 0.5 𝛼3  
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5. CONCLUSION 
 

In the paper, we will focus on a single-level inventory 

model for blood supply chain in the Namazi hospital and 

an optimization model designed to manage the resources 

of the hospital that ultimately reduce costs and improves 

patient services. The focus of this study is on the whole 

blood because its demand is higher and it is a non-

replaceable substance. We used integer programming to 

the model. The first model was a nonlinear definite model 

which we linearized it. The second model was an 

uncertain model that was more closely related to the real 

world and solved it by a robust fuzzy possibilistic 

method. 

The examined model was a single-product and multi-

cycle model. The delivery time for blood supply was zero 

and the blood centers were limited and the policy was to 

send the product using the FIFO principle. By reducing 

the maximum capacity, you can not order a lot because 

less blood can be stored, so there will be shortage costs 

which will increase costs, as well as increased capacity 

will also increase orders. It imposes the cost of 

maintenance and waste on the system but its enormous 

increase does not affect the cost and costs constant 

because we can not be more than the capacity of the blood 

transfusion organization. Therefore, considering the 

appropriate limit for maximum capacity requires strong 

management. By increasing the shortage cost, the 

hospital maintains more blood units, therefore levels of 

deficiency reduces and inventory levels increases in 

leading to an increase in casualties and an increase in 

total hospital costs. The results showed with increasing 

demand for patients the total expected cost of the hospital 

increases, because the number of orders and the 

likelihood of deficiency to the hospital increases. In 

future research, we can use other optimization 

approaches. The following could be presented as 

suggested paths for future research. 

• Extends the model and makes it a multi-product 

model, adding another level to the problem and 

reducing the cost of blood transfusion centers. 

• Blood componenet or products e.g. platet and 

plasma is considered in the problem.  

• A closed-loop supply chain is designed to 

accommodate a refund for blood that has not been 

used by the hospital and has expired. 

• Patient satisfaction is also considered in the model. 
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Persian Abstract 

 چکیده 

نگهداری تعداد زیادی از واحدهای خونی به  های فاسدشدنی این محصول، باشد. به دلیل ویژگی های خونی میچالش اصلی در زنجیره تامین خون، کمبود و هدر رفتن فراورده

های مهم مرتبط با سلامتی شود و نتیجه آ» افزایش  کمبود خون ممکن است باعث لغو فعالیتشود. از طرف دیگر  عنوان موجودی باعث خراب شدن این منابع محدود و نادر می

در بیمارستان   های خونیریزی عدد صحیح با هدف حداقل کردن هزینه کل، کمبود و هدر رفت فراوردهها است. در این مقاله یک مدل برنامهبالقوه مرگ و میر در بیمارستان

ریزی محدودیت احتمال ارائه شده است  گیرد. رویکرد برنامه ارامترها در دنیای واقعی نامشخص هستند و این مساله در این مقاله مورد بررسی قرار می نمازی ارائه شده است. پ

اعتبارسنجی مدل در مورد مسائلی    تجزیه و تحلیل حساسیت برایو یک تصویر عددی از بیمارستان نمازی برای نشان دادن کاربرد مدل بهینه پیشنهادی استفاده گردیده است.  

دهد که مدل قادر به کنترل عدم قطعیت  مانند سطح اطمینان در مدل احتمالی، وزن ضریب و مقدار جریمه تابع هدف در مدل فازی استوار انجام شده است. نتایج عددی نشان می

  درصد کمتر است. 80فازی استوار ر شود؛ بنابراین مقدار تابع هدف دباشد و قیمت مقاومتی بر سیستم تحمیل میمی
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