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A B S T R A C T  
 

 

Federated learning enables aggregating models trained over a large number of clients by sending the 
models to a central server, while data privacy is preserved since only the models are sent. Federated 

learning techniques are considerably vulnerable to poisoning attacks. In this paper, we explore the threat 

of poisoning attacks and introduce a game-based robust federated averaging algorithm to detect and 
discard bad updates provided by the clients. We model the aggregating process with a mixed-strategy 

game that is played between the server and each client. The valid actions of the clients are to send good 

or bad updates while the server can accept or ignore these updates as its valid actions.  By employing the 
Nash Equilibrium property, the server determines the probability of providing good updates by each 

client. The experimental results show that our proposed game-based aggregation algorithm is 

significantly more robust to faulty and noisy clients in comparison with the most recently presented 
methods. According to these results, our algorithm converges after a maximum of 30 iterations and can 

detect 100% of the bad clients for all the investigated scenarios. In addition, the accuracy of the proposed 

algorithm is at least 15.8% and 2.3% better than the state of the art for flipping and noisy scenarios, 
respectively. 

doi: 10.5829/ije.2021.34.04a.09 
 

 
1. INTRODUCTION1 

 

As datasets grow, the optimization of learning model 

parameters needs distribution across multiple machines. 

The idea of federated learning has recently been 

proposed, in which a shared global model is trained with 

the cooperation of a central server and some participants 

named clients [1-7], as can be seen in Figure 1. In other 

words, the clients train the model using their own local 

datasets and send it back to the central server. The server 

aggregates the information sent by the clients to update 

the shared global model. Afterward, the server sends the 

updated global model to some of the clients and this 

process is repeated again. Since the clients send only the 

model and not the data to the server, the data privacy is 

preserved. 

One of the most important concerns about federated 

learning is sending bad updates by faulty or malicious 

clients. The researchers showed that only one bad client 

can compromise the model as well as the result in a 

convergence problem [4]. Thus, the researchers have 
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tried to mitigate this problem by proposing different 

robust federated learning approaches [1, 8-10].  

However, some of these techniques impose 

computational cost in comparison with the conventional 

averaging such as Federated Averaging (FA) [1], 

especially for a large number of clients. In addition, most 

of these techniques do not consider the number of data 

points used by each client to train the local models. 

In this paper, we propose a Game-based robust Federated 

Averaging algorithm (GFA) to detect and discard bad 

updates provided by the clients. The proposed method 

uses an iterative averaging algorithm to highlight the 

effect of the good updates sent by the majority of the 

clients. At the end of this iterative algorithm, a 

trustworthiness is assigned to each client that can be used 

to put the client in one of the good or bad sets. Finally, 

the server considers the probability of providing good 

updates to the model by each client. These probabilities 

can be computed by considering a mixed-strategy game 

between the central server and each client that exists in 

the good client set. The valid actions of the clients are to  
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Figure 1. Architecture for a federated learning system with 

five benign clients that communicate with a central server 

periodically to learn a global model 

 

 

send good or bad updates while the server can accept or 

ignore these updates. By employing the Nash 

Equilibrium property [11], the server determines the 

clients’ probability to provide good updates to the model. 

We summarize our main contributions as follows: 

• We propose an iterative averaging algorithm for the 

server to obtain the trustworthiness of each update 

and a robust estimate of the final model, 

simultaneously. 

• We model the problem using a mixed-strategy game 

between the central server and each client.  

• We apply the Nash Equilibrium property to 

compute the probability of providing good updates 

from each client. 

We provide a thorough empirical evaluation of the 

effectiveness and efficiency of our proposed robust 

federated learning method. The results show that our 

method provides both higher accuracy and faster 

convergence than the existing methods. Specifically, our 

algorithm converges after a maximum of 30 iterations 

and can detect 100% of the bad clients for all the 

investigated scenarios. Furthermore, the accuracy of the 

proposed algorithm is at least 15.8% and 2.3% better than 

the state of the art for flipping and noisy scenarios, 

respectively. 

The rest of this paper is organized as follows. The 

related work is discussed in Section 2. Section 3 

describes the proposed federated learning as well as the 

aggregation algorithm. The experimental results are 

reported and discussed in Section 4, followed by the 

conclusion in Section 5. 
 
 

2. RELATED WORK 
 
Federated learning for the first time was implemented by 

Google to predict users’ text input within a large number 

of mobile devices without sending private data [2, 12]. 

One of the main elements of Federated learning is the 

aggregation operator. Several federated aggregation 

operators have been presented in literature. FedAvg [13] 

updates the global model by averaging the parameters of 

the local models. This algorithm was used for 

recognizing out-of-vocabulary words [14] and improving 

the mobile keyboard prediction [15]. As a modification 

to FedAvg, Federated Stochastic Variance Reduced 

Gradient (FSVRG) [2] was presented to work with sparse 

data. In contrast to FedAvg and FSVRG, CO-OP [16] has 

been presented for asynchronous model updates. It 

merges any received client model with the global model. 

According to the difference in the age of the models, the 

local and global models merging is carried out using a 

weighting scheme, instead of directly averaging the 

models. 

Due to the distributed scheme of federated learning, 

it is highly vulnerable to attacks against the learning 

models. As previously mentioned, sending bad updates 

by faulty or malicious clients is the most serious concern 

for federated learning. Consequently, the standard 

federated learning algorithms such as FedAvg [1, 13] are 

vulnerable to both model poisoning and data poisoning.  

To overcome this problem, researchers have proposed 

different robust averaging algorithms [8, 17, 18].  

Some other researches have focused on vulnerability 

in federated learning known as a backdoor attack [3, 19]. 

In this kind of attack, the adversary tries to reduce the 

performance of the model on targeted tasks while 

maintaining good performance on the main task [19].  

Authors in [8] proposed a byzantine-robust 

aggregation algorithm, referred to as KRUM, which is 

based on the similarity of the client updates. To solve the 

slow convergence problem of the KRUM, a faster 

algorithm known as MKRUM was introduced. Yin et al. 

[17] proposed a coordinate-wise median (COMED), a 

byzantine-robust statistical learning algorithm with a 

focus on statistical optimality.  

Although the aforementioned researches take into 

account both model poisoning and data poisoning for a 

number of simple attack scenarios, the proposed methods 

can be computationally expensive when the number of 

clients is large. In contrast, the computational complexity 

of our method (GFA) can be shown to be considerably 

less. Moreover, the previous algorithms do not consider 

the number of data points used by each client to train the 

local models, while the GFA computes the averaging 

based on the dataset size of each client.  

Moreover, our proposed method flexibly chooses the 

good clients based on the received information at each 

iteration. Therefore, it is more efficient in comparison 

with the works that use a pre-specified number of clients’ 

information to update the global model, such as the work 

proposed by Xie et al. [18].  Especially, unlike the GFA, 

when all of the clients or the majority of them are good, 

the algorithm of Xie et al. [18] considers the pre-specified 
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number of the clients as bad, which will affect the 

performance of the learning process. 

Also, some works have focused on applying game 

theory to the federated learning system [20-22]. The 

authors in [20] proposed a contract theory-based 

incentive mechanism to motivate data owners that have 

high-quality local training data to join the learning 

processes. In [21], the authors presented the Stackelberg 

game model to analyze the transmission strategy and 

training data pricing strategy of the self-organized mobile 

device as well as the learning service subscription of the 

model owner in the cooperative federated learning 

system. Zou et al. [22] adopted an evolutionary game 

theory to model dynamic strategies of the mobile devices 

with bounded rationality in the federated learning system. 

Although all of these works used the game theory, none 

of them focused on the averaging algorithm in federated 

learning. In this paper, we use the game theory to propose 

a robust federated averaging algorithm to detect and 

discard bad updates provided by the clients.  
 
 

3. FEDERATED LEARNING AND AGGREGATION 
ALGORITHM 
 

In this section, we formulate the federated learning 

paradigm and propose our robust aggregation algorithm 

based on a game-theoretical approach.  

 

3. 1. Federated Learning Model          The main idea 

of federated learning  is to perform the training of a deep 

neural network (DNN) using some clients by aggregating 

local models into a joint global model, as can be seen in 

Figure 1. Since the local training data never shared by the 

clients, the federated model can train on completely 

private data. 

We suppose there are 𝑁 clients where the ith client’s 

dataset has 𝑛𝑖  data points. At round 𝑡, the server 

randomly chooses a subset of clients (𝑀𝑡) and sends them 

the latest global model (𝜔𝑡). Each client, for example, 𝑖 ∈
𝑀𝑡 that receives the model, updates it by training on its 

dataset, and derives a new local model (𝜔𝑡+1
𝑖 ).  

Afterward, the chosen clients send back the new model 

to the central server. In this step, the server averages the 

received local models to achieve an updated global model 

according to Equation (1). 

𝜔𝑡+1 = ∑
𝑛𝑖

𝑛𝑖⊂𝑀𝑡
𝜔𝑡+1

𝑖 , (1) 

where 𝑛 is obtained as follows: 

𝑛 = ∑ 𝑛𝑖𝑖⊂𝑀𝑡
 . (2) 

However, by using such an aggregation method, only 

a bad (malicious or faulty) client can lead to the wrong 

solution or prevent the DNN to be converged [4]. To 

solve this problem, in the next sections, we propose a 

novel aggregation algorithm based on the game theory in 

which the probability of providing good model updates 

by each client is considered. Table 1 contains a summary 

of the notations used in this paper. 

 
3. 2. Adversary Model           In this paper, we make 

the following assumptions regarding the adversary: (1) 

We assume that only less than half of the clients can be 

compromised; (2) the attacker controls the local training 

data of any compromised client; (3) it does not control 

the aggregation algorithm used by the server to average 

clients’ updates and generate the new global model; (4) 

the attacker can not control the updates sent by the good 

clients and, (5) the data is distributed among the clients 

in an i.i.d fashion. 

The adversary’s goal in our work is to prevent the 

global model to converge. So, we propose a novel 

aggregation algorithm to overcome the convergence 

problem of the previous algorithms while the attacker 

follows the above-mentioned assumptions. In the rest of 

this paper, we use bad clients whenever we mean 

malicious or faulty clients. 
 
3. 3. Aggregation Algorithm           To implement 

robust federated learning, we should initially estimate the 

bad clients. To reach this goal, we propose a novel 

averaging algorithm as well as a game model in this 

Section. 

 

3. 3. 1. Averaging Algorithm            At each round, 

when the central server receives the local updates of the 

clients; it uses an adaptive averaging method. In this 

paper, we proposed to highlight the effect of the good 

updates sent by the majority of the clients [23, 24]. The 

proposed aggregation algorithm is detailed in Algorithm 

1.  

When the server receives the local updates of the 

clients, the server iteratively computes a weighed average 

as follows: 
 

 

TABLE 1. The notation used in this paper. 

Symbol Description 

𝑁  The number of clients 

𝑛𝑖   The size of the ith client dataset 

𝑀𝑡  The number of clients that send updates at round 𝑡 

𝑚  The size of 𝑀𝑡 

𝜔𝑡+1
𝑖   The local model provided by the ith client at round 𝑡 

𝜔𝑡+1  The global model sent to the clients 

𝐺𝑡  The set of clients considered good by the server 

𝑁𝐺  The size of  𝐺𝑡 

𝐴𝐴𝑘  
The weighed average of the received updates in kth 

iteration 

𝑦𝑖  The distance between 𝜔𝑡+1
𝑖  and 𝐴𝐴𝑘−1 
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𝐴𝐴𝑘 =
∑ 𝑒−𝛼𝑦𝑖𝑖∈𝑀𝑡 𝜔𝑡+1

𝑖

∑ 𝑒−𝛼𝑦𝑖𝑖∈𝑀𝑡

,   𝑘 > 1     (3) 

where 𝐴𝐴𝑘 is the weighted average of the received 

updates in kth iteration and 𝑦𝑖  is the distance between 

𝜔𝑡+1
𝑖  and the weighted average at the previous iteration 

(𝐴𝐴𝑘−1), obtained as follows: 

𝑦𝑖 = |𝝎𝒕+𝟏
𝒊 − 𝐀𝐀𝐤−𝟏|     

It is to be noted that we compute the distance of each 

client’s model with the current estimate of the 

aggregation values to estimate the trustworthiness of the 

clients. In other words, there is an inverse relationship 

between the trustworthiness of a client and the distance 

of its local model with the aggregated model obtained at 

each iteration of our adaptive aggregation algorithm. We 

employed an exponential decaying function to model 

such an inverse relationship as it shows promising results 

in our experiments. One can choose any other decaying 

function to compute the trustworthiness from the distance 

value of the models. In Equation (3), 𝛼 is a constant 

parameter that controls the amount of trustworthiness 

(𝑒−𝛼𝑦𝑖) considered for each update. 

It should be noted that the iterative procedure starts 

with giving equal credibility to all clients, i.e., with an 

initial value of 1. Consequently, the initial aggregated 

model at the first iteration of the algorithm is calculated 

using a simple averaging as follows: 

 

Algorithm 1 Robust Aggregation Algorithm 

Require: 𝑴𝒕, 𝒏𝒊, 𝝎𝒕+𝟏
𝒊 , K, 𝜶 

𝑮𝒕 ← {𝒊: 𝒊 ∈ 𝑴𝒕} 

𝒎 : the size of 𝑴𝒕 

for k = 1, 2, 3,…, K do 

        if  k = 1 then   

             𝐀𝐀𝟏 =
∑ 𝛚𝐭+𝟏

𝐢
𝐢∈𝐌𝐭

𝐦
 

         else 

             for 𝒊 ∈ 𝑴𝒕 do 

                    𝒚𝒊 = |𝝎𝒕+𝟏
𝒊 − 𝐀𝐀𝐤−𝟏|  

             end for 

             Compute 𝐀𝐀𝐤 according to Eq. (3) 

         end if            

end for 

Apply k-means to set of  {𝐞−𝛂𝐲𝟏 , … , 𝒆−𝜶𝒚𝒎}   and form two           

sets, 𝑮𝒕 and 𝑩𝒕 

Compute  𝒑𝒕
𝒊 using Game model 

𝝎𝒕+𝟏 ←
∑ 𝒑𝒕

𝒊  𝒏𝒊  𝝎𝒕+𝟏
𝒊

𝒊∈𝑮𝒕  

∑ 𝒑𝒕
𝒊  𝒏𝒊𝒊∈𝑮𝒕  

 

return 𝝎𝒕+𝟏 , 𝐆𝐭 

𝐴𝐴1 =
∑ 𝜔𝑡+1

𝑖
𝑖∈𝑀𝑡

𝑚
    (4) 

where 𝑚 is the size of 𝑀𝑡. By considering a stopping 

criterion (K), according to the variation of the 

trustworthiness of the clients, the iterative algorithm will 

be stopped. The main idea for our proposed aggregation 

algorithm is inspired by the iterative filtering algorithm 

proposed by [in the literature [25]. In this reference, a 

class of voting systems based on iterative filtering has 

been presented. In other words, in the first round, the 

simple average of the votes is calculated. Then, 

proportional to the inverse of the distance from the 

calculated average, an averaging weight is considered for 

each vote to compute a next round average. This process 

continues until the majority votes are close enough to 

each other and therefore the minority votes are filtered. 

The proof of convergence has been provided in the 

literature for two different discriminant functions [25]. 

We believe that a similar method can be used to prove the 

convergence of the iterative process in Algorithm 1. We 

leave this proof as an interesting idea for our future work. 

Now, we expect the trustworthiness of the good 

clients are similar enough and spaced far enough from the 

bad clients [23]. So, the server can apply a one-

dimensional k-means algorithm to put the clients in two 

separate clusters, bad clients (𝐵𝑡) and good clients (𝐺𝑡) 

with more than half of the clients. Thus, the server can 

average the updates by good clients regarding to the 

fraction of training data points provided by each client 

(Equation (5)). 

However, due to the similarity of the updates 

provided by the clients, some of them may be 

misdiagnosed. Therefore, the server should consider a 

probability (𝑝𝑡
𝑖) in the model aggregation algorithm for 

each client in 𝐺𝑡, according to Equation (5). 

𝜔𝑡+1 =
∑ 𝑝𝑡

𝑖  𝑛𝑖  𝜔𝑡+1
𝑖

𝑖∈𝐺𝑡  

∑ 𝑝𝑡
𝑖  𝑛𝑖𝑖∈𝐺𝑡  

  (5) 

The clients’ probability to provide good updates to 

the model can be computed by considering a game 

between the central server and each client in 𝐺𝑡, as 

described in the next section. 

 

3. 3. 2. Game Model        We suppose the server plays 

the game independently with each client. The valid 

actions of the clients are to send good or bad updates 

while the server can accept or ignore these updates as its 

valid actions. It should be noted that in our model the 

players (server and clients) follow a mixed-strategy in 

which the actions are randomly selected over the set of 

available actions according to some probability 

distribution. Afterward, the Nash Equilibrium property  is 

applied to determine the probability of server and client 

actions. The Nash Equilibrium property is a popular 

Game Theory concept that describes strategies from 
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which reasonable decision makers should not be deviated 

to maximize their utility. 

The server uses the calculated probability of 

accepting the updates in our aggregation method as can 

be seen in Equation (5).  

Figure 2 illustrates the normal form of the game 

including the valid actions and corresponding payoffs for 

the ith player. 

𝐴𝑖 =
𝑛𝑖

𝑁𝐺
|𝜔𝑖

𝑡+1 − 𝜔𝑡|  (6) 

𝐵𝑖 =
𝑛𝑖

𝑁𝐺
|𝜔𝑖

𝑡+1
|  (7) 

and, 

 

(8) 

where 𝑚𝑖
𝐺 and 𝑚𝑖

𝐵 are the number of times that the 𝑖th 

client is in the good and bad set, respectively. Moreover, 

𝑁𝐺 is the total number of data points in 𝐺𝑡. 

As one can see in Figure 2, each client can send good 

or bad updates while the server can accept or ignore these 

updates as valid actions. When the ith client sends good 

updates, if the server accepts these updates, it earns a 

payoff as large as 𝐴𝑖, which indicates the ith client 

contribution to the correction of the previous global 

model. On the other hand, if the server rejects these good 

updates, it losses this amount of payoff. Furthermore, we 

consider the client payoff equal to 𝐵𝑖 , that is the client 

contribution in the global model at the next round, if the 

server accepts the good updates. It is worth noting that 

when a client is misdiagnosed several times, the server 

ignores it forever. Clearly, we should consider the effect 

of this wrong action of the server in the client payoff 

when it sends a good model. Therefore, in this situation, 

we add the term  𝑙𝑛
1

1+𝑥
 to the client payoff. In this term, 

𝑥 is related to the number of good model rejection by the 

server as explained in Equation (8).  

Now, if the client is faulty or malicious and sends bad 

updates, the payoffs of the players can be determined as 

illustrated in Figure 2. When the server accepts the bad  

 

 

 
Figure 2. The normal form of the game played between the 

server and the ith client 

updates, both of them experience negative payoff. On the 

other hand, if the server rejects these updates, neither side 

will earn any payoffs. 

 

3. 3. 3. Nash Equilibrium          Since in our model, the 

players follow a mixed-strategy, we can determine the 

probability of the server and clients actions by applying 

the Nash Equilibrium property. In other words, there is at 

least one Nash Equilibrium when we consider mixed-

strategy [26]. A mixed strategy Nash Equilibrium 

involves at least one player playing a randomized 

strategy and no player is able to increase his or her 

expected payoff by playing an alternate strategy. At the 

mixed Nash Equilibrium, both players should be 

indifferent between their two strategies. Therefore, if the 

server is using a mixed strategy, it must be indifferent 

between accepting and rejecting the updates. So, we can 

write: 

𝑞𝑡
𝑖𝐴𝑖 − 𝐴𝑖(1 − 𝑞𝑡

𝑖) =  𝑞𝑡
𝑖(−𝐴𝑖 + 𝑙𝑛(

1

1+𝑥
))  (9) 

and therefore we can calculate the probability of sending 

good updates by the ith client (𝒒𝒕
𝒊), when it plays Nash 

Equilibrium, as follows: 

𝒒𝒕
𝒊 =

𝐴𝑖

3𝐴𝑖−𝑙𝑛
1

1+𝑥

   
(10) 

On the other hand, when the server plays Nash 

Equilibrium, the ith client should be indifferent between 

its two actions. So, in a similar way, the probability of 

accepting the ith client updates (𝒑𝒕
𝒊) by the server, when 

it plays Nash Equilibrium, can be derived as follows: 

𝒑𝒕
𝒊 =

𝐵𝑖−𝑙𝑛
1

1+𝑥

3𝐵𝑖−𝑙𝑛
1

1+𝑥

  (11) 

Finally, the server uses 𝒑𝒕
𝒊 in Equation (5) when it 

aggregates the received updates.  

It is worth noting that this game has also two pure 

strategy Nash Equilibriums, i.e. (Good, Accept) and 

(Bad, Reject), which are quite obvious.  
 
 

4. EXPERIMENTS 
 

In this section, we report on a detailed experimental study 

that examines robustness and efficiency of our robust 

federated learning method . The objective of our 

experiments is to evaluate the robustness and efficiency 

of our approach for estimating the global model based on 

the model received from the clients in the presence of 

faults. 

 
4. 1. Experimental Environment           We conducted 

experiments on three datasets:  CIFAR-10 [27], MNIST 

[28] and SPAMBASE. CIFAR-10 consists of 60000 

32 × 32 color images in 10 classes while MNIST has 

70000 28 × 28 handwritten digits in 10 classes. For 
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CIFAR we used VGG-11 which is a familiar 

convolutional neural network [29] and for MNIST we 

trained DNNs with 784 × 512 × 256 × 10 with learning 

rate 0.1 and Dropout probability 0.5. Also, the hidden 

layers and output layer activation functions are Leaky 

ReLU and Softmax, respectively. Furthermore, for 

SPAMBASE we trained DNNs with 54 × 100 × 50 × 1 

with learning rate 0.05 and Dropout probability 0.5. Also, 

the hidden layers and output layer activation functions 

are Leaky ReLU and Sigmoid, respectively. We 

considered gradient descent as the optimization method 

where the batch size and epoch number are 200 and 10, 

respectively. For all the simulations, we set 𝛼 = 5 and we 

consider the number of clients 10 and 100. Moreover, we 

assume that all the clients are selected to send updates for 

the server, i. e. 𝑀𝑡 = 𝑁. 

In this paper, we consider four different scenarios, 

namely, clean, byzantine, flipping, and noisy to evaluate 

our proposed method. For the clean scenario, all of the 

clients send good updates to the server. In the byzantine 

case, some of the clients are bad and send updates that 

are significantly different from the updates sent by the 

good clients. In this case, we consider a Gaussian 

distribution with mean zero and isotropic covariance 

matrix with standard deviation 20. For the third scenario 

that is flipping, we set all the labels of data points, used 

by the selected bad clients to train the model, to zero.  

Finally, in noisy case, we add uniform noise to all the 

pixels of the noisy clients. 

 

4. 2. Evaluation Results           In this section, we 

compare our proposed method (GFA)  with the previous 

works, namely, Multi-KRUM (MKRUM) [8], Federated 

Averaging (FA) [1], and COMED [12]. Figures 3, 5, and 

7 illustrate the test accuracy of all the algorithms for 10 

clients as a function of the number of iterations on the 

CIFAR-10, MNIST, and SPAMBASE datasets, 

respectively. In addition, Figures 4, 6, and 8 illustrate the 

test accuracy of all the algorithms for 100 clients as a 

function of the number of iterations on the CIFAR-10, 

MNIST, and SPAMBASE datasets, respectively. 

According to these figures, we can analyze the 

convergence of these algorithms. As can be observed, the 

proposed algorithm converges for all the four scenarios 

over both datasets while other algorithms do not 

converge in at least one of the eight cases.  For example, 

the FA and COMED algorithms do not converge for 

flipping scenarios on the CIFAR-10 while MKRUM and 

COMED have the same convergence problem on the 

MNIST. In addition, in the worst case, our algorithm 

converges after a maximum of 30 iterations.  

In addition, Figure 9 illustrates test accuracy as a 

function of the number of iterations for different values 

of 𝛼 on two datasets, namely, CIFAR-10 and 

SPAMBASE. Accordingly, we set 𝛼 = 5 because it leads 

to the best accuracy.    

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Test accuracy (%) as a function of the number of 

iterations for 10 clients and for different algorithms on 

CIFAR-10 for, a) clean (all benign clients), b) byzantine, c) 

flipping, and d) noisy clients 

 
 

Even in the cases where the other methods converge, 

the proposed GFA algorithm is ultimately more accurate. 

Tables 2, 3, and 4 compare the ultimate test accuracy of 

the different algorithms over CIFAR-10, MNIST, and 

SPAMBASE, respectively. Accordingly, for CIFAR-10,  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Test accuracy (%) as a function of the number of 

iterations for 100 clients and for different algorithms on 

CIFAR-10 for, a) clean (all benign clients), b) byzantine, c) 

flipping, and d) noisy clients 

 

 

the test accuracy of the proposed algorithm is at least 

14%, 15.8%, and 2.3% better than the others for 

byzantine, flipping, and noisy scenarios, respectively. 

For this dataset and in the case of clean scenario, the 

results show that the accuracy of the GFA is only 0.27% 

less than the standard FA algorithm. On the other hand, 

for MNIST, the simulations indicate a similar situation 

where the accuracy of our method is at least 0.4%, 27%, 

and 2.6% higher than the byzantine, flipping, and noisy 

scenarios, respectively. Again,  the accuracy of the FA 

algorithm is a little (0.8%) better than the GFA algorithm 

in the case of clean. 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Test accuracy (%) as a function of the number of 

iterations for 10 clients and for different algorithms on 

MNIST for, a) clean (all benign clients), b) byzantine, c) 

flipping, and d) noisy clients 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Test accuracy (%) as a function of the number of 

iterations for 100 clients and for different algorithms on 

MNIST for, a) clean (all benign clients), b) byzantine, c) 

flipping, and d) noisy clients 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Test accuracy (%) as a function of the number of 

iterations for 10 clients and for different algorithms on 

SPAMBASE for, a) clean (all benign clients), b) byzantine, 

c) flipping, and d) noisy clients 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 8. Test accuracy (%) as a function of the number of 

iterations for 100 clients and for different algorithms on 

SPAMBASE for, a) clean (all benign clients), b) byzantine, 

c) flipping, and d) noisy clients 
 
 

 
(a) 

 
(b) 

Figure 9. Test accuracy (%) as a function of the number of 

iterations for different values of 𝛼 on a) CIFAR-10 and b) 

SPAMBASE datasets 

 
 

Furthermore, we investigated the detection rate for 

bad clients in Table 5. According to this table, for all of 

the scenarios containing malicious clients, the proposed  

TABLE 2. The test accuracy of different algorithms for the 

CIFAR-10 dataset 

Algorithm Clean Byzantine Flipping Noisy 

GFA 72.83 67.06 63.48 71.69 

FA 73.03 52.49 54.78 70.02 

COMED 62.06 58.63 56.84 62.09 

MKRUM 54.76 55.32 43.93 53.13 

 

 
TABLE 3. The test accuracy of different algorithms for the 

MNIST dataset 

Algorithm Clean Byzantine Flipping Noisy 

GFA 98.09 98.01 98.23 98.09 

FA 98.89 10.29 77.17 95.57 

COMED 97.02 97.43 91.13 95.96 

MKRUM 96.01 95.07 70.00 95.22 

 

 
TABLE 4. The test accuracy of different algorithms for 

SPAMBASE dataset 

Algorithm Clean Byzantine Flipping Noisy 

GFA 96.42 96.65 94.18 93.50 

FA 97.19 10.91 86.98 91.13 

COMED 95.74 96.24 88.97 92.48 

MKRUM 91.64 91.53 90.88 90.58 

 

 
TABLE 5. The detection rate of GFA algorithm for bad clients 

on MNIST, CIFAR-10, and SPAMBASE datasets 

Dataset Byzantine Flipping Noisy 

MNIST 100% 100% 100% 

CIFAR10 100% 100% 100% 

SPAMBASE 100% 100% 100% 

 

 
algorithm in this paper can detect 100% of the bad clients 

for both datasets. 
 
 

5. CONCLUSION 
 
In this paper, we introduced a game-based robust 

federated averaging algorithm to detect and discard bad 

updates provided by the clients. The proposed method 

uses an adaptive averaging method, in an iteration 

manner, to highlight the effect of the good updates sent 

by the majority of the clients. At the end of this iterative 

algorithm, a trustworthiness is assigned to each client that 

can be used to put the client in one of the good or bad 

sets. Finally, the server considers the probability of 

providing good updates by the clients to the model. These 
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probabilities can be computed by considering a mixed-

strategy game between the central server and each client 

that exists in the good client set. The valid actions of the 

clients are to send good or bad updates while the server 

can accept or ignore these updates. By employing the 

Nash Equilibrium property, the server determines the 

clients’ probability to provide good updates to the model. 

In experiments, we considered four scenarios, clean, 

byzantine, flipping, and noisy that were evaluated on 

MNIST, SIFAR-10, and SPAMBASE datasets for 10 and 

100 clients. For all of the scenarios and both datasets, our 

algorithm converges after a maximum of 30 iterations. It 

should be noted that in all cases, 100% of the bad clients 

can be detected for both datasets. In addition, the test 

accuracy of the proposed algorithm is at least 15.8% and 

2.3% better than the others for flipping and noisy 

scenarios, respectively. 

In future work, we plan to use the Game Theory to 

detect the backdoor attack where a malicious client can 

use model replacement to introduce backdoor 

functionality into the global model. 
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Persian Abstract 

 چکیده

گردد.  این درحالیست ارسال این مدلها به سرور مرکزی فراهم میبا استفاده ازیادگیری فدراسیونی قابلیت تجمیع مدلهای آموزش یافته بر روی تعداد زیادی از کلاینتها از طریق  

شود. روشهای یادگیری فدراسیونی به شدت درمعرض حملات قرار دارند. در این  که همچنان حریم خصوصی کلاینتها حفظ خواهد شد، زیرا تنها مدلها به سرور ارسال می

گیری را با یک بازی با سناریوی میکس که در آن هر کلاینت و سرور به عنوان  ه بازیها ارائه میکنیم. ما فرآیند میانگینگیری مقاوم براساس نظریمقاله ما یک الگوریتم میانگین

باشند. نتایج  ها می های خوب و بد و نیز اعمال سرور شامل پذیرش یا رد این بروزرسانیبازیکن می باشند، مدل میکنیم. اعمال مجاز کلاینتها در بازی شامل ارسال بروزرسانی

ی باشد. مطابق این نتایج، روش پیشنهادی آزمایشها نشان میدهد به کار بردن روش میانگین گیری مبتنی بر نظریه بازیها بسیار مقاومتر از روشهای مشابه در مقابل کلاینتها مخرب م

  2.3درصد و    15.8دهد. همچنین روش ما از نظر دقت به ترتیب حداکثر    درصد از کلاینتهای مخرب را تشخیص  100تکرار همگرا میشود و قادر است    30حداکثر بعداز  

 درصد بهتر از روشهای پیشین برای دو سناریوی فلیپینگ و نویزی می باشد.

 


