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A B S T R A C T  
 

 

The reliability of data driven prognostics algorithms severely depends on the volume of data. Therefore 
in case of limited data availability, life estimations usually are not acceptable; because the quantity of 

run to failure data is not sufficient to train prognostics model efficiently. To board this problem, a life 

clustering prognostics (LCP) framework is proposed. LCP regenerates the train data at different ages and 
outcomes to increment of the training data volume. So, the method is useful for limited data conditions. 

In this research, initially LCP performance is studied in normal situation is; successively robustness of 

the framework under limited data conditions is considered. For this purpose, a case study on turbofan 
engines is performed. The accuracy for the proposed LCP approach is 71% and better than other 

approaches. The prognostics accuracy is compared in various situations of data deficiency for the case 

study. The prognostic measures remain almost unchanged when the training data is even one third. 
Successively, prognostics accuracy decreases with a slight slope; so that when the training data drops 

from 100 to 5%, the accuracy of the results drops 26%. The results indicates the robustness of the 

proposed algorithm in limited data situation. The main contribution of this paper include: (1) The 
effectiveness of life clustering idea for use in prognostics algorithms is proven; (2) A step-by-step 

framework for LCP is provided; (3) A robustness analysis is performed for the proposed prognostics 

algorithm.  

doi: 10.5829/ije.2021.34.03c.18 
 

 
1. INTRODUCTION1 
 
In recent years, prognostics and health management 

(PHM) of complex mechanical systems has become more 

prominent. Prognostic and Remained Useful Life (RUL) 

prediction has been initialized in medical field [1]; 

subsequently attracted much attention in engineering 

issues due to economical and operational considerations 

[2]. Predicting future behavior of a complex machine 

such as a gas turbine is a complicated task. Prognostics is 

currently at the core of systems’ health management to 

achieve reliable and safe operation of machines. In the 

framework of PHM, many techniques exist which are 

basically classified into two principal classes: data-driven 

and model-based prognostics approach [3-4]. The fact 

that most researches are focusing on data-driven methods 

shows the desire to work with easily accessible data as 
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compared to model-based methods, irrespective of the 

difficulties in gaining accessing statistically significant 

run-to-failure data. Despite acceptance of data-driven 

methods, the on-going difficulty with these methods is 

that they show acceptable RUL estimation only when 

abundant run-to-failure data are available for training. 

Although, under the condition of limited failure data, 

model-based solutions are unsuccessful due to their 

requirement to large amounts of failure data for 

validating physical models [5]. 

In this research, data driven methods are focused and 

divided mainly in two groups: typical methods and robust 

methods. A typical prognostics method rely on large 

amounts of historical failure data (i.e. run-to failure data 

indicating past degradation patterns) to estimate 

prognostics model parameters [5]. Otherwise, the 

predictions may be unreliable and the training can not be 
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carried out. The fact limits the application of typical 

prognostics methods in problems with small amount of 

available training data [6]. Failure data are limited in real 

industrial cases due to some reasons: (1) rare failures; (2) 

overprotective maintenance and replacement regimes; 

(3) incomplete reports [7]. 

Majority of prognostics researches are developed 

assuming enough run-to-failure data are available for 

training. Some researchers have used combined 

regression techniques, including linear and quadratic 

models to predict the RUL of gas turbine engines [8]. 

Other methods like particle filter [9], adaptive-order 

particle filter [10], Kaplan Meier [11] and support vector 

machine (SVM) [12] have been used for prognostics. Yu 

et al. [13] have developed a prognostics system for 

engine health assessment based on logistic regression and 

state-space-model. Simon et al. [14] have compared the 

estimation accuracy and computational effort of variants 

of the Kalman filter like linearized Kalman filter (LKF), 

extended Kalman filter (EKF), and unscented Kalman 

filter (UKF) for aircraft engine health estimation. Lu et 

al. [15] have presented a nonlinear state estimation 

method based on EKF and obtained a significant 

improvement in estimation accuracy and robustness. 

Ding et al. [16] have fused support vector machine and 

the genetic algorithm and proposed an intelligent 

prognostics approach. Goebel et al. [17] compared the 

results of a relevance vector machine (RVM), a Gaussian 

process regression (GPR), and an artificial neural 

network (ANN) approach in prognostics. 

On the contrary, with the robust methods, the RUL 

estimation is acceptable despite the lack of abundant 

trained data. Recently, some novel prognostics methods 

based on classic algorithms are suggested, such as fusion 

of prognostics algorithms [18], multistate structure [19], 

etc. Xu et al. [18] have integrated the strengths of the 

experience-based prognostics approach and the data-

driven approach. The developed fusion prognostics 

framework has been employed to predict the RUL of a 

gas turbine engine as an application example [18]. 

Moghaddass et al.[19] have demonstrated that 

deterioration process occurs through different levels of 

health states before failure, leading to a multistate 

deterioration process in many real-world cases. Xiang et 

al. [20] have proposed a probabilistic methodology for 

fatigue prognostics using an inverse first-order reliability 

method. However, the robustness tests are rarely 

reported  . 

In this paper, a novel methodology is presented based 

on life clustering that allows training datasets to be 

augmented. Usually, the goal of clustering in literature 

has been to organize data into homogeneous groups to 

compact clusters with minimum intra group similarity 

and to increase separation among clusters with 

maximized inter group dissimilarity [21]. The proposed 

method of life clustering prognostics (LCP) is able to 

increase the train data set samples; in addition to organize 

data into homogeneous groups. 

The case study is to compare the prognostics accuracy 

for a robust framework in abundant data and little data 

condition with for turbofan engines Prognostic Health 

Management (PHM) Challenge data [22]. For 2008 PHM 

challenge, many authors have reported the RUL 

estimation for a given data set. Only typical tests using 

large scale data have been stated. The best results have 

been obtained by using RULCLIPPER algorithm [23], 

EVIPRO algorithm [24] and a similarity-instance based 

approach [25]. These results are used as the reference 

point of the current study  . 

The main contributions of this paper can be 

summarized as follows. First, the effectiveness of the 

idea of life clustering for use in prognostics algorithms is 

proven. Although artificial neural network is used as the 

main prediction tool in this paper, the idea of LCP can be 

combined and used with other classical methods of 

prognostics. Second, a step-by-step framework for 

prognostics based on life clustering is provided. This 

method significantly improves the reliability of this 

algorithm while using all the advantages of a predictive 

algorithm as the core prediction algorithm. Third, a 

robustness analysis is performed for the proposed 

prediction algorithm. This study evaluates the 

performance of the algorithm in different conditions of 

lack of sufficient data. Based on the evaluations, the LCP 

algorithm is robust in limited information conditions and 

has acceptable results. Robustness of a prognostics 

algorithm is a critical issue in industrial and real-world 

cases, where predictive maintenance is required against 

lack of abundant run-to-failure data   . 

The outline of this paper is as follows. In section 2 

layout of the study is presented. Data processing and 

prognostics method is explained in section 3. In sections 

4, implementation of the proposed method on a case 

study is described. This paper ends with results and 

conclusions in two last sections. 

 

 

2. LAYOUT OF THE STUDY 
 
2. 1. Data Description     To illustrate the outcomes of 

this method on prognostics and health monitoring, a case 

study on turbofan engines from NASA's prognostics 

Information Repository is performed. The structure of the 

data set and the effectiveness of the proposed model are 

presented in this section. The data consists of 21 

Measurements, including the measurements listed in 

Table 1, that are measured during every flight cycle. In 

the dataset, multiple units operate until failure occurs, 

providing training set. The other units run to different 

levels of destruction, forming test set. The challenge is to 

predict the RUL of test units. This dataset is one of the 

most widely datasets used for the development and  
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TABLE 1. List of sensors and Measurements used in this paper 

[22] 

Unit Description Symbol 

O R Total temperature at LPC outlet T24 

O R Total temperature at HPC outlet T30 

Psia Total pressure at HPC outlet P30 

Rpm Physical core speed Nc 

- Engine pressure ratio (P50 / P2) Pr 

- Ratio of fuel flow  to Ps30 Phi 

- Bypass ratio BPR 

- Bleed enthalpy BE 

O R Total temperature at LPT outlet T50 

Psia static pressure at HPC outlet Ps30 

- Burner Fuel air ratio farB 

 

 

validation of prognostics algorithms [2, 18-19]. Figure 1 

shows the main components of the aircraft gas turbine 

engine model. 

 

2. 2. Prognostic Measures              In the PHM context, 

sometimes it is desirable to predict early as compared to 

predicting late. Therefore, the asymmetric interval I= [-

10, +13] around the true RUL is considered to evaluate 

the performance. Accuracy measure is defined as the 

percentage of correct estimations which falls within the 

interval I [25]. 

Mean square error (MSE) and mean absolute error 

(MAE) are two other measures which are used to evaluate 

the performance of LCP method more accurately, 

𝑒𝑚𝑠𝑒 =
1

𝑁
√∑ (𝑒𝑟𝑟𝑡)2𝑁

𝑡=1   (1) 

𝑒𝑚𝑎𝑒 =
1

𝑁
∑ |𝑒𝑟𝑟𝑡|𝑁

𝑡=1   (2) 

where error is defined for a given prediction by Equation 

(2): 

(3) err = True RUL - Estimated RUL  

 
 
3. PROGNOSTICS METHOD  
 

In a data-driven PHM process, after data acquisition, the 

first challenge is how to map the conditions between a 

complex and interconnected system with its level of the 

drop; for this purpose, data processing and signal feature 

extraction should be done. Two general approaches are 

considered to extract features and design a health 

indicator (HI). The first approach is to use gas-path 

parameters such as temperature, vibrations, flow 

capacity, pressure, compressor efficiency, fan efficiency,  

 
Figure 1. Simplified diagram of the gas turbine engine [22] 

 

 

etc. Vibration and modal analysis is widely used to 

estimate life of mechanical systems [26-27]. 

Mohammadi et al. [28] determined performance 

deterioration according to efficiency and flow capacity as 

health indicators. The second approach is the 

combination of functional and performance sensors. In 

this field, we can mention the works [18, 29, 30], that 

combine different sensors with different fusion 

techniques. Diallo [11] has shown in his research that 

multi-sensor data fusion approach is more reliable. A step 

by step methodology is indicated in literature [30] to 

produce a Health Indicator Feature [HIF] vector, which 

is used in this article. 

 

3. 1. The LCP Prognostic Framework             A 

prognostics framework based on life clustering is 

developed as shown in Figure 2. RUL estimation is 

accomplished through the life clustering of the engines 

and subsequently construction of a specific prediction 

module for each cluster. The proposed framework can be 

implemented as the following phases. 
Clustering      In the first phase, clustering is performed. 

The estimation start time of each test engine is shown 

with symbol tc. In the prognostics issue for a fleet of 

engines, a range of tc [min (tc): max (tc)] exists. The 

range must be separated to several divisions in the 

clustering phase. The cluster width (CW) is defined as 

follows: 

𝐶𝑊𝑖 =  𝑡𝑖 − 𝑡𝑖−1, ∑ 𝐶𝑊𝑖 =𝑛
𝑖=1  𝑡𝑛 − 𝑡0  (4) 

where tis are clustering borders, t0 is the min (tc), tn is 

the max (tc) and n is the number of partitions. In the 

simple form, clusters widths may be assumed equal. To 

attain more accurate results, the number of partitions and 

cluster widths can be found by an optimization process.  

Reproduction   In the second phase, a time step (ts) is 

considered so that train data set is observed several times 

at each time step. Considering maximum observation 

resolution, each time step is an observation point (ts=1). 

For example, the ith cluster width is mi (CWi = mi), so the 

train data set is reproduced mi times. For any  
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Figure 2. The framework of LCP prognostics 

 

 

reproduction, units with life lengths less than the relevant 

observation point are withdrawn; the others are stopped 

at that point . 

Till now, mi reproductions of train data set are 

produced for each cluster. Now, data processing of units 

in each reproduction is performed and mi vectors HIF are 

produced. In the last step of this phase, the HIF vectors 

for each cluster are merged to one and finally n 

cumulative HIF vectors are remained for n clusters. 

Mapping   In the previous phase, train data was 

reproduced several times and n cumulative HIF vectors 

were resulted. Now in the third phase, a prediction tool 

such as neural network is used to find a relation between 

HIFs and RULs for train data. The HIFs are selected as 

the input, and the corresponding true RUL data are 

selected as the target values to train the prediction 

modules. The results of the third phase are n prediction 

modules for n different life clusters. 

RUL estimation    In the fourth phase, RUL estimation 

of the target unit is performed. Initially, signal processing 

for the device is performed and the relevant HIF vector is 

calculated. Then, cluster selection must be done 

according to the prediction start age (tc) of the test unit. 

It can be done in two ways: 

1. Classic way, so that each unit belongs to a cluster if 

its tc is between the minimum and maximum age of that 

cluster 

2. Fuzzy way, in which each unit belongs to a cluster 

to some degree that is specified by a membership 

function.  

After cluster selection, the HIF vector of the test unit is 

inputted to the related prediction module and the device 

RUL is estimated.  

 

 

4. CASE STUDY 
 

The steps taken in this study are based on the framework 

given in Figure 2. The main parameters of the LCP 

framework are the number of clusters (n), the clusters 

width (CW) and the observation time step (ts). The 

optimum values for these parameters are different for 

each problem and must be optimized. To achieve this 

goal, various prognostics measures may be defined as the 

objective function. Sequential phases of the LCP 

framework are executed and the best parameters are 

found through an optimization process. 

Phase 1     To determine the clustering parameters, four 

phases of LCP prognostics are implemented and the 

prognostics measures were compared. For the current 

case study, prognostics criterions remain almost 

unaffected while n>2, as shown in Figure 3. Thus, n = 4 

is chosen to evade costly computations. Sequentially, the 

optimum clusters widths (CW) are found out by genetic 

algorithm to maximize the accuracy. The optimal 

clustering parameters are summarized in Table 2. 

Phase 2     Considering observation time step =1 cycle, 

the train data set is reproduced at each cycle. For every 

cycle, for instance the cth cycle, all engines with age 

longer than c cycles are stopped at the cth cycle. Then 

data process is performed and health indicator 

features HIFtr(c) are extracted. Finally relevant HIFs  
 

 

 
Figure 3. Prognostic measures via. number of clusters 
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TABLE 2. Summary of optimal clustering scheme   

Cluster width Life interval Cluster 

45 cycles 31-75 cycles I 

50 cycles 76-125 cycles II 

71 cycles 126-196 cycles III 

107 cycles 197-303 cycles IV 

 

 

for each cluster are merged to one, for example 

𝑯𝑰𝑭𝒕𝒓(𝟑𝟏), 𝑯𝑰𝑭𝒕𝒓(𝟑𝟐) … & 𝑯𝑰𝑭𝒕𝒓(𝟕𝟓) are merged to 

one cumulative vector for the 1st cluster,  

𝑯𝑰𝑭𝒕𝒓(𝟕𝟔), 𝑯𝑰𝑭𝒕𝒓(𝟕𝟕) … & 𝑯𝑰𝑭𝒕𝒓(𝟏𝟐𝟓) are merged to 

one cumulative vector for the 2nd cluster and so on for 

other clusters from Table 2. Summary of reproductions 

of train data set are represented in Table 3. 

Phase 3    In the third phase, the algorithm creates a map 

between HIFs and RULs for each cluster. For this aim, 

neural network fitting tool is used [31]. In the present 

study, a forward multilayer perceptron (MLP) with 

backward propagation Bayesian training algorithm is 

applied. The network is composed from 10 hidden layers, 

70% of data is used for train, 15% for test and 15% for 

validation. The summary of the formation of four 

networks is presented in Table 4. 

Phase 4    RUL estimation is performed through the 

following steps:  

1. For the jth test engine, tc is considered (tcj). 

2. Depending on its age, the appropriate group from 

Table 2 is selected (group #k). 

3. The relevant HIF vector of jth test engine is 

extracted (HIFte (j)). 

 

 
TABLE 3. Summary of train data set reproductions 

Cluster length of cumulative HIF 

1 4500 

2 5000 

3 5971 

4 2240 

 

 
TABLE 4. Summary of the formation of the prediction 

modules  

Target Input ANN 

1x4500 matrix, representing 

RULs of engines 

2x4500 matrix, representing 

2 features of 4500 HI signals 
I 

1x5000 matrix, representing 

RULs of engines 

2x5000 matrix, representing 

2 features of 5000 HI signals 
II 

1x5971 matrix, representing 

RULs of engines 

2x5971 matrix, representing 

2 features of 5971 HI signals 
III 

1x2240 matrix, representing 

RULs of engines 

2x2240 matrix, representing 

2 features of 2240 HI signals 
IV 

4. HIFte (j) is applied as an input to the kth network.  

5. The network output is the estimated RUL of the test 

engine. 

 

 

5. RESULTS AND DISCUSSION 
 
The performance of the proposed prognostics method is 

evaluated in two states: 

1. Full train data: In this state, all engines (100 units) 

of train dataset #1 from turbofan engines of the 

NASA Prognostic Data Repository are utilized to 

train the LCP algorithm. This is similar to the 

condition in which most researches have used for 

training their algorithms and represented their 

results.    

2. Limited train data: In this state, a portion of train 

dataset #1 is used for training LCP algorithm. Tests 

are performed with 50, 30, 20 and 10% of train data 

(equal to 50, 30, 20 and 10 engines). This state is 

similar to real world in industries when one should 

deal with a limited train data.       

 

5. 1. LCP Results in Full Train Data Condition        To 

evaluate the effectiveness of the LCP algorithm, a 

comparison with other approaches is performed as 

indicated in Table 5. Full testing dataset is used in few 

papers to our knowledge: Ramasso et al. [23, 24], Khelif 

et al. [25] and Wang et al. [32] that achieved the best 

score in PHM challenge 2008. The accuracy for the 

proposed LCP approach is better in comparison with 

other approaches. 

 
5. 2. LCP Results under Limited Train Data 
Condition             It was shown in the previous section 

that the accuracy of the LCP method is reliable for full 

data condition in comparison with other methods. In this 

section a sensitivity analysis is performed under limited 

data condition. As mentioned earlier, four tests are 

performed in this section with 50, 30, 20 and 10% of train 

data. Each test is repeated several times in a way that 

different portions of the train data are selected. Finally, 

the mean value of prognostic measures for each test is 
 

 

TABLE 5. Comparison of accuracy for different methods  

Method Correct % Early % Late % 

LCP model (using ANN for 

prediction modules)  
71 23 6 

Ramasso [24] 67 Nan Nan 

Khelif et al.[25] 54 18 28 

Ramasso et al. [23] 53 36 11 

 Javed et al. [33] 53 27 20 

Wang et al. [32] 44 19 37 
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summarized in Table 6. A comparison of prognostics 

measures for different sizes of train data is indicated in 

Figure 4. 

While the proposed algorithm reproduces train data 

several times for each life cluster, the size of the training 

set is several times larger than the initial train data set. 

Comparison of results for different numbers of training 

data showed that when the number of training data 

decreases, (1) prediction accuracy remains almost 

unchanged for about 30% of available train data, (2) 

prediction accuracy decreases about 14% with a slight 

slope when the available train data falls from 30 units to 

10 units and (3) when the available train data goes down 

from 10 units to 5 units, prediction drops 10% 

significantly . 

Further investigations can be made on the robustness 

of the proposed algorithm under limited training data 

condition. Prognostics results of engines in different 

cycles are studied in this paper. The actual RUL value 

and the RUL estimate with limited train data (10 units for  

 
TABLE 6. Summary of prognostic measures 

Number of train 

data units 

Accuracy (%) 
MAE MSE 

Mean STD 

100 58 2 0 14.14 1.97 

50  57 3.1 14.5 2 

30 56 3.4 14.4 2 

20 46.6 3.1 17.3 2.3 

10 42 5.7 21.2 2.9 

5 32 7.8 31.75 4.4 

 

 

 
Figure 4. Comparison of prognostics measures for different 

sizes of train data 

 
2 The neural network training multiple times will generate different 

results due to different initial conditions; Therefore, for sensitivity 

analysis, the polynomial regression is used for composing prediction 

 

 
Figure 5. Prognostics results of engines #99-100 in different 

cycles with limited train data set (10 units for training) 

 

 

training) are shown in Figure 5 for engines #99-100. 

Other engines results (#91-98) are shown in Appendix A 

The results showed that overall (1) the RUL estimate with 

small data is reasonably close to the actual RUL 

especially in large ages, (2) as the engine ages, the 

prediction error for the RUL gets narrower, means that, 

the prognostics uncertainty declines, and (3) in some 

cases, lack of enough data especially in the last cluster, 

results to increase prediction error.  In general, the results 

indirectly support the hypothesis that, life clustering 

method leads to acceptable results in condition of train 

data deficiency (although not necessarily the best 

method). 

 

 

6. CONCLUSION 
 

In this paper, a prognostic algorithm is proposed that first 

classifies the test units in different age groups, then 

estimates their RUL using predictive techniques. The 

modules of the ABC method and the resulted accuracy is different with 

table 5 (ABC model using ANN)  



734                                A. Mahmoodian et al. / IJE TRANSACTIONS C: Aspects  Vol. 34, No. 03, (March 2021)   728-736                                            

proposed algorithm uses one of the conventional and 

available prediction methods (such as ANN as presented 

in this study) as the core prediction tool and rectifies it 

with more reliable and robust results . 

A case study shows that the results achieved by this 

method were significantly improved compared to other 

conventional methods and it was observed that life 

clustering can be very effective in prognostics. LCP was 

able to predict with 71% accuracy, a little better than the 

best published results on the same case study. While the 

performance of the LCP method was evaluated under 

normal conditions, its results were examined in the 

condition of limited training data, which happens 

frequently in industry  . 

Comparison of results for different conditions of 

available training data showed that the prognostic 

measures remain almost unchanged when the training 

data is even one third. The reason is that the training data 

set has been multiplied several times and it compensates 

the lack of enough training data. Successively, 

prognostics accuracy decreases with a slight slope; so 

that when the available training data drops from 30 to 

10%, the accuracy of the results drops from 56 to 42%. 

After that accuracy drops considerably to 32% for 5% of 

available train data. Although significant accuracy drop 

is observed below 10% of available train data, it is 

notable that LCP is using train data of only 5 units to 

predict remaining life of 100 test units . 

In the final stage, more cases were tested and the 

results of the prognostics algorithm were plotted using a 

low number of training data (10 engines). The results 

show that the RUL estimate with small data is rationally 

close to the actual RUL, although in some cases, severe 

lack of data especially in the last cluster, results to 

increase prediction error   . 

The results of this case study confirmed that the LCP 

method (1) is a powerful prognostics tool in normal 

condition and (2) is a robust technique under limited data 

condition. So the proposed method can be integrated with 

any classic method to result more accurate and robust 

RUL estimates for real-world situations. The 

methodology developed in this paper is not limited to the 

use with turbojet engine prognostics. It can be extended 

to other prognostics problems . 

Integration and modification of more prediction 

methods with life clustering idea are to be investigated in 

future works. However, there are some potential 

limitations existing in the prediction for the last cluster 

(in case of severe lack of data) which could be improved 

with fusion of previous clusters predictions in the future 

study. 
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Prognostics results of engines #81-96 in different cycles 

with limited train data set are shown in Figure A-1. 
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Figure A-1. Prognostics results of engines #91-98 in 

different cycles with limited train data set 

 

 

 

 

 

 

 

 

 

 

 

 

 

Persian Abstract 

 چکیده 
  ین حل ا  ی. برایستداده، برآورد عمر معمولاً قابل قبول ن  یتدر صورت محدود  یندارد. بنابرا  یها بستگبه شدت به حجم داده  یهپا-داده  یآگه  یشپ  هاییتم الگور  ینان اطم  یتقابل

ها را داده ینحجم ا یجهکرده و در نت یمختلف بازساز  ینآموزش را در سن یساختار داده ها ینشده است. ا یشنهادعمر پ یبر خوشه بند یمبتن یآگه یشساختار پ یکمشکل ، 

  یعاد  یطدر شرا  یشنهادیپ  یتم، ابتدا عملکرد الگور  یقتحق  ینکارآمد باشد. در ا  تواندیکه با داده محدود مواجه هستند م  یمسائل  یروش برا  ینجهت ا  ین. از ادهدیم  یشافزا

حاصل   یجشود. نتا یتوربوفن انجام م یموتورها یرو یمطالعه مورد یکمنظور،  ینا  ی. براشودیداده مطالعه م یتمحدود ایطدر شر یتمشود. متعاقبا عملکرد الگور یم یبررس

  یآگه  یشدقت پ  یافته،سوم کاهش    یک  یزانآموزش به م  ی که داده ها  یبوده است. هنگام  یگرد  ی% و بهتر از روشها71  یعاد  یطدر شرا  یشنهادیدقت روش پ  دهدینشان م

از مقاوم بودن    یبدست آمده حاک  نتایج  مجموع،   در.  است  کرده  افت  ٪26  یجدقت نتا  یافته،  کاهش  ٪5  به  100آموزش از    یداده ها  یمانده است. وقت  یبدون افت باق  قریباًت

 داده است.  یتمحدود یطدر شرا یشنهادیپ یتمالگور

 
 


