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A B S T R A C T  

 

Accurate segmentation of lesions from dermoscopic images is very important for timely diagnosis and 
treatment of skin cancers. Due to the variety of shape, size, color, and location of lesions in dermoscopic 

images, automatic segmentation of skin lesions remains a challenge. In this study, a two-stage method 

is presented for the segmentation of skin lesions using Deep Learning. In the first stage, convolutional 
neural networks (CNNs) estimate the approximate size and location of the lesion. A sub-image around 

the estimated bounding box is cropped from the original image. The sub-image is resized to an image of 

a predefined size. In order to segment the exact area of the lesion from the normal image, other CNNs 
are used in the DeepLab structure. The accuracy of the normalization stage has a significant impact on 

the final performance. In order to increase the normalization accuracy, a combination of four networks 

in the structure of Yolov3 is used. Two approaches are proposed to combine the Yolov3 structures. The 
segmentation results of the two networks in the DeepLab v3+ structure are also combined to improve 

the performance of the second stage. Another challenge is the small number of training images. To 

overcome this problem, the data augmentation is used along with different modes of an image in each 
stage. In order to evaluate the proposed method, experiments are performed on the well-known ISBI 

2017 dataset. Experimental results show that the proposed lesion segmentation method outperforms the 

state-of-the-art methods. 

doi: 10. 5829/ije.2021.34.02b.18 
 

 
1. INTRODUCTION1 
 

Nowadays, cancer is one of the most common reasons of 

mortality in humans worldwide. One of the most 

prevalent cancers is melanoma skin cancer. This disease 

is initiated when a specific type of skin cell named 

melanocyte starts to over-grow out of control [1]. 

Therefore, attempts to diagnose this disease in early 

stages are very important for more rapid treatment and 

increasing the chance of survival [2]. Visual inspection 

during laboratory assessments and medical examination 

of skin lesions might cause misdiagnosis due to 

similarities of skin lesions and normal skin tissues [3]. In 

the recent decade, dermatologists have begun to use an 

invasive imaging tool called dermoscopy which provides 

an enlarged image of skin lesion through polarized light 

[4].  It shows more details of the skin structure and 

improves the correctness of the diagnosis in comparison 
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to visual observation.  However, observation and 

verification of dermoscopy images by dermatologists is 

subjective, difficult, and time-consuming [4]. Thus, an 

automatic accurate skin lesion recognition system is very 

critical to support dermatologists in decision-making. 

One essential primary stage in any computer-based 

diagnostic system for detecting melanoma is automated 

segmentation of skin lesions [5–7]. The lesion 

segmentation remains a challenge due to the large variety 

of skin lesions in color, shape, texture, location, and size 

in dermoscopy images. In addition, low contrast borders 

between lesions and surrounding tissues, existence of 

ruler sign, blood vessels, hair, air bubbles, and changes 

of brightness are amongst the barriers to  accurate 

segmentation [8].  

Generally, there are various methods for image 

segmentation, such as methods based on edge detection, 

thresholding, region detection, feature clustering [9-10], 
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as well as supervised methods such as those based on 

deep neural networks [11]. Various supervised methods 

have been used for segmentation of skin lesions such as 

decision tree, support vector machine, and neural 

networks. Indeed, these methods use low-level features 

[8]. Recently, image segmentation based on deep 

learning has become one of the main image segmentation 

methods. Deep learning based on Convolutional Neural 

Networks (CNNs) is a powerful method. CNN is capable 

to exclude more appropriate features in comparison to the 

features extracted by conventional methods [12–14]. The 

first application of CNN-based method in semantic 

segmentation was presented by Ciregan et al. [15, 16].  

In 2017, Burdick et al. investigated the effect of 

segmentation boundary expansion involving pixels 

around the target lesion. They used ISBI 2016 Challenge 

dataset [17] to evaluate the experiments. They found the 

preprocessing techniques that create bounds larger than 

the actual lesion can potentially improve the performance 

of the classifier [18]. You et al., in 2017 prersented a two-

stage method to segment and classify skin lesions using 

fully convolutional residual network (FCRN). They 

examined their method on the ISBI 2016 dataset, and 

achieved the accuracy of 94.9% [19]. Yuan et al. in 2017 

presented a method for segmentation of skin lesions 

using deep fully convolutional networks (FCN). They 

employed the Jaccard distance as a loss function of the 

FCN. They evaluated their method on ISBI 2016 and  

PH2 datasets, and reached the accuracy of 95.5%, and 

93.8%, respectively [20].  

In 2017, Lin et al. comprised two skin lesion 

segmentation approaches, C-means clustering and U-

Net-based histogram equalization. Their work was 

evaluated on the ISBI 2017 dataset. The clustering 

technique achieved a dice index of 61% and the U-Net 

method results in the accuracy of 77% [21]. Li et al., 

proposed another approach based on a lesion index 

calculation unit (LICU) and multi-scale fully-

convolutional residual networks. They evaluated their 

approach on the ISBI 2017 dataset and achieved 71.8% 

in Jaccard index [22]. Bi et al. followed the FCN 

architecture to add convolutional and deconvolutional 

layers, which upsample the feature maps derived from 

Resnet to output the score mask. They achieved Jaccard 

index of 76.1% on ISBI 2017 dataset [23]. Yuan and Lo 

proposed a method for segmentation of skin lesions 

based on convolutional-deconvolutional neural networks 

(CDNN). They trained their model through various color 

spaces. Their method was ranked first in the ISBI 2017 

lesion segmentation challenge with a Jaccard index of 

76.5% [24]. Al-Masni et al.  (2018) conducted a study on 

segmentation of skin lesions and designed a full 

resolution convolutional network. They performed the 

examinations on ISBI 2017 and PH2 datasets, and 

achieved 77.11% and 84.79% by Jaccard criteria, 

respectively [8].  

Baghersalimi et al. presented a full convolutional 

neural network, DermoNet, to segment skin lesions. In 

DermoNet, subsequent layers could reuse the 

information extracted from previous layers. The Jaccard 

values of DermoNet on ISBI 2017 dataset was 78.3% 

[25]. 

Hasan et al., proposed a Dermoscopic Skin Network 

(DSNet) to segment skin lesions. To reduce the number 

of network parameters, depth-wise separable convolution 

layers were used in their network. They achieved the 

Jaccard value of 77.5% on the ISBI 2017 dataset [26]. 

Tang et al. developed a skin lesion segmentation 

method based on separable U-Net and took advantage of 

the separable convolutional block and the U-Net 

architectures, simultaneously. The Jaccard index of their 

method on ISBI 2017 dataset was 79.26% [27]. 

For many applications, both local and global 

information on lesions and normal tissues are required to 

increase the segmentation accuracy. Many researchers 

have used multi-flow architectures to combine local and 

global information [28]. Chen et al. used three CNNs 

which receive information on lesion from different 

aspects as input. The features extracted from each CNN 

were concatenated as output, constituting the final 

feature vector [29]. Similarly, Kawaraha and Hamarneh  

introduced a method for classifying skin lesions using 

multi-flow CNN. In this method, the flows worked on 

various versions of resolution of the image [30].  

These studies indicated that the combination of 

several CNNs with various details can improve the final 

performance. In this study, combinations of CNNs have 

been used to improve the accuracy of each stage of the 

proposed method.  

Our contributions in this work are as follows: Using 

normalization stage before the segmentation stage. 

- Using state-of-the-art CNNs in both normalization and 

segmentation stages. 

- Combination of Yolo networks to improve the accuracy 

of the normalization stage. 

- Proposing a novel combined structure for Yolov3 to 

combine the results of  Yolo networks. 

- Combination of DeepLab v3+ networks to improve the 

segmentation accuracy. 

- Using various modes of images to overcome large 

variety of lesions and low number of training images. 

 

 

2. MATERIALS AND METHODS 
 
2. 1. Dataset                 The proposed segmentation method 

was evaluated on a well-known and open ISBI 2017 

challenge dataset. This dataset was prepared by the 

International Skin Imaging Collaboration (ISIC) archive 

[31], and was presented online [32]. This dataset consists 

of 8-bit RGB dermoscopy images of sizes from 540×722 

to 4499×6748 pixels. Out of 2750 images, 2000, 150, and 
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600 images have been categorized for training, 

validation, and test, respectively. 

 

2. 2. Proposed Method              The purpose of lesion 

segmentation is extraction of skin lesions from 

dermoscopy images in order to help disease diagnosis. In 

recent years, various methods such as U-Net and FCN 

have been used for medical image segmentation. FCN 

and U-Net, as well as other single-stage methods are 

sensitive to the lesion size. Very large and very small 

lesions decrease the accuracy of single-stage 

segmentation methods. In addition, various locations of 

lesions in images increase the complexity of networks 

and reduce the performance. In our experiments by using 

single-stage methods, we observed that a significant 

number of inaccurate segmentation occurred in two 

categories of skin images: the images in which the lesion 

was very big or very small, and the images in which the 

lesion was not in the center. Therefore, it is better to add 

a stage before the segmentation stage to normalize the 

size and location of lesions in images. This will reduce 

complexity of the  network training in the segmentation 

stage. The proposed method consists of two stages of 

normalization and segmentation. The normalization 

stage estimates the approximate size and location of 

lesions. This stage yields normal images in which the 

lesions have similar sizes and are placed in the center. In 

the following stage, lesions will be more accurately 

segmented from the normalized images compared to the 

original input images. The overall framework of the 

proposed lesion segmentation method is illustrated in 

Figure 1. 

 

2. 3. Size and Location Normalization of Lesions          
Any error in the normalization stage leads to high costs 

in performance of the segmentation stage. Hence, the 

accuracy of the normalization stage is very important. 

One of the possible errors in the normalization stage 

occurs when the cropped image does not include any part 

of the lesion. It means that some pixels of the skin lesion 

do not exist in the output image of the normalization 

stage. For these images, before entering the segmentation 

stage, a part of the lesion is missed. Therefore, the high 

accuracy in the normalization stage is very important. If 

the accuracy of the normalization is not large enough, it 

might cause reduction in the final accuracy compared to 

single-stage segmentation methods (without 

normalization stage). In the proposed method, 

convolutional neural networks with definite structures 

presented for object detection will be used as the 

normalization stage. CNNs are very competent and 

practical in applications of object detection and 

classification. Various common deep networks based on 

CNN were being proposed and used for the above 

applications [33].  

Object  detection  networks  such  as  R-CNN [34], 

Fast R-CNN   [35],   and   Faster   R-CNN   [36]   combine  

 
Figure 1. The overall framework of the proposed method 

 

 
convolutional networks with region proposal networks. 

Methods of Single Shot multi-box Detector (SSD)  [37] 

and You Only Look Once (Yolo)  [38] detect objects only 

in one convolutional process without region proposals 

[33]. Amongst various methods for object detection, 

Faster R-CNN usually shows appropriate accuracy, but 

its computational cost is very high as compared to Yolo 

[39]. The accuracy of Faster R-CNN might be higher than 

that of Yolo in many applications of detection, but the 

speed of Yolo is far greater than that of Faster R-CNN 

[40]. On the other hand, in implementations, the score 

value for Faster R-CNN is usually very close to 1, even 

in cases of misdetection. However, the score value in 

Yolo is usually proportional to the correctness of 

detection. In other words, Yolo presents lower scores for 

the samples which cannot be detectted definitely. As 

pointed above, one of the approaches that can be 

implemented to enhance the accuracy of the detection is 

the combination of the results of several detectors. This 

ability of Yolo that presents the scores proportional to the 

detection accuracy is very important and applicable in 

combining detectors. In this paper, due to the ability of 
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Yolo for combination as well as its reasonable accuracy 

and speed appropriateness, a combination of several 

Yolo detectors is used in the normalization stage.  

Yolo is a CNN-based object detection algorithm 

which divides the image into several sub-regions. Then, 

it predicts bounding boxes and class probabilities for 

each of the sub-regions. Yolo algorithm predicts two 

values for any anchor box: one of them is the class 

probabilities, and the other one is the bounding box 

characteristics [38].  

To improve the performance of Yolov1, a second 

version, Yolov2, was developed. Yolov2 uses an identity 

mapping and concatenating feature maps from a previous 

layer to capture low-level features [41]. 

In Yolov3, the feature map are taken from one of the 

last layers of a pre-trained network. The feature map is 

upsampled by 2. Another feature map from earlier in the 

network is concatenated with the upsampled features.   

This allows Yolov3 to  get  both meaningful semantic and 

finer-grained information from the feature maps.  Some 

convolutional layers process these combined feature 

maps [42]. Yolov3 has two outputs in scales of 1 and 2 

that are used in the training phase. We use the latest 

version of Yolo, Yolov3, in our experiments. 
 

2. 4. Combining Networks in The First Stage               
In order to improve the performance of the normalization 

stage, a combination of several networks is used with the 

overall structure of Yolov3 containing different pre-

trained networks. Several pre-trained networks exist with 

each possessing specific characteristics. Indeed, if an 

inappropriate pre-trained network is used for an 

application, a suitable efficiency will not be achieved. 

The difference of each pre-trained network is due to the 

number of layers, the number of convolutional filters, 

and their complexities [43]. Using transfer learning 

concept, the weights of a network trained based on a 

specific dataset such as ImageNet, can be used and 

trained again by a different dataset to be used in another 

application. Utilizing learned weights in pre-trained 

networks, the model can be trained at a higher speed 

based on the new dataset. The first layers of pre-trained 

networks were trained to detect primary and main 

features of an image such as borders, corners, round 

formats, basic geometric shapes, and colors [33]. In this 

study, various pre-trained networks such as VGG [44], 

AlexNet [13], Resnet [45], GoogleNet [46], and 

Inception [47] are used as the basis networks of the 

Yolov3 structures. The constructed Yolo networks are 

further investigated, and those with a higher performance 

in the validation set are selected for combining the results 

in the normalization stage. As shown in Figure 1, the 

outputs of Yolo networks include the coordinates and 

size of the estimated bounding boxes of detected lesions. 

In the proposed method, two approaches to combine the 

Yolo networks are introduced. 

In the first approach, the outputs of Yolo networks are 

combined by averaging the coordinates and size of the 

bounding boxes obtained by each Yolo network. 

Meanwhile, the outputs of some Yolo detectors might 

have a low score. Therefore, for an input image, amongst 

all 𝑁 outputs of detectors, the 𝑀 (𝑀 ≤  𝑁) outputs with 

the largest score are used to combine and determine the 

final bounding box.  

To improve the performance of each Yolo network in 

the normalization stage, for an input image, totally four 

modes are considered and applied to the input of each 

Yolo network, as follows:  

1. Input image 

2. Horizontal flip of input image 

3. Vertical flip of input image 

4. Input image with 180 degrees rotation 

Four corresponding outputs will be calculated by 

applying their inverse transforms. Thus, for each input 

image, each detector makes four bounding boxes with 

corresponding scores in the output. By combining 𝑁 

detectors, totally 4𝑁 bounding boxes will be achieved. 

3𝑁 out of 4𝑁 bounding boxes with the largest score will 

be considered for averaging and determining the final 

bounding box as follows: 

𝑥 =
∑ ∑ 𝛼𝑖𝑗𝑥𝑖𝑗

4
𝑗=1

𝑁
𝑖=1

∑ ∑ 𝛼𝑖𝑗
4
𝑗=1

𝑁
𝑖=1

  (1) 

𝛼𝑖𝑗 = {
1 𝑆𝑐𝑜𝑟𝑒𝑖𝑗 is in the set of 3𝑁 largest scores

0 elsewhere
  (2) 

where 𝑆𝑐𝑜𝑟𝑒𝑖𝑗  and 𝑥𝑖𝑗   are the estimation score and the 𝑥 

coordinate of upper left corner of the bounding box of the 

j-th mode of the input image estimated by the i-th 

network, respectively.  𝑦, 𝑤, and ℎ of the final bounding 

box are calculated in a similar way.  

In the second approach, the trained Yolo networks 

and an additional convolutional network are combined to 

construct a novel combined Yolo structure as shown in 

Figure 2. In this figure, the yellow boxes are the Yolov3 

networks which are trained separately. The weights of 

layers of these networks are freezed during the training 

of the combined Yolo structure. To have better results, 

the outputs of trained Yolo networks should be combined 

with respect to the content of the input image. Hence, an 

additional convolutional network (green boxes) are 

employed to extract useful features from the input image 

to be used in the combination procedure. Briefly, in the 

second approach, the combined Yolov3 structure learns 

how to combine the outputs of frozen Yolo networks 

according to features of input images. Four parameters of 

convolution layers in Figure 2 are respectively the filter 

size, number of filters, stride, and the zero padding size. 

To avoid missing any parts of lesion in the normal 

image, it is better to consider a margin around the 

estimated bounding box before the image cropping. To 

do this,  the estimated bounding box is extended on both  
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sides in both vertical and horizontal directions. The 

extended box is cropped from the input image and is sent 

to the segmentation stage. The extent of margin around 

the estimated bounding box is considered as 30% of the 

size of bounding box in each direction. The bounding 

boxes estimated by Yolov3 structures based on four pre-

trained networks, final estimated bounding box, extended 

box, and the normalized image for an instance image are 

displayed in Figure 3. 

The bounding boxes estimated by Yolov3 structures 

based on four pre-trained networks, final estimated 

bounding box, extended box, and the normalized image 

for an instance image are displayed in Figure 3. The red, 

green, blue, and yellow colours in Figure 3(a-d) are 

related to the first, second, third, and forth modes of the 

input image. Green rectangle in Figure 3(e) is the correct 

bounding box of the lesion. The red and blue rectangles 

are  the  bounding  boxes  estimated  by  the  first  and  

the    second    Yolo    results    combination   approaches, 

respectively. The red rectangles with dashed lines are the 

extended box around the lesion estimated by the first 

combination approach. The extended box is cropped and 

resized to construct the normal image (Figure 3(f)). 

 
2. 5. Segmentation Stage          Various methods and 

networks are used for semantic segmentation of images 

in different applications. One of the novel structures is 

the DeepLab structure [48]. 

DeepLab is a model of deep learning for 

segmentation of images. In general, the DeepLab 

architecture is based on a combination of two common 

Spatial Pyramid Pooling and Encoder-decoder networks 

architectures [49].  

Different DeepLab structures have been proposed 

over time. DeepLab v1 [48], DeepLab v2 [50], DeepLab 

v3 [51], and DeepLab v3+ [49] are the various structures 

of DeepLab. DeepLab v1 uses atrous convolution to 

control the resolution at which feature maps are 
 

 

 
Figure 2. The proposed combined Yolov3 structure 
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(a) (b) 

  
(c) (d) 

  
  

(e) (f) 

Figure 3. Result of normalization stage for a sample image.  

(a), (b), (c), and (d) are the bounding boxes estimated by 

Yolov3 structures based on Resnet50, Resnet101, VGG16, and 

VGG19, respectively.  (e) The correct bounding box is shown 

with a green box. The red and blue rectangles are the bounding 

boxes estimated by the first and the second Yolo results 

combination approaches, respectively. The red dashed 

rectangle is the extended box around the lesion estimated by 

the first combination approach. (f) Normalized image. 
 
 

computed [48]. In DeepLab v2, by using atrous spatial 

pyramid pooling (ASPP), objects are segmented on 

multiple scales with effective fields-of-view and filters at 

multiple sampling rates [50]. To capture more 

information, DeepLab v3 augments the ASPP module via 

image-level feature. 

It also includes batch normalization parameters. 

DeepLab v3+ includes an effective decoder module to 

improve the segmentation results [49]. 

We use DeepLab3+ structure [49] in the segmentation 

stage of our proposed method. To improve the 

performance of our segmentation stage, totally eight 

different  modes  of  input  image  are  considered  as 

follows: 

- Input image, Horizontal and Vertical flips of the image, 

the image rotated by -45, 45, 90, 180, and 270 degrees. 

The output of each input mode is rotated or is flipped 

back to the original mode. The final result is obtained by 

combining the outputs. The final output of the 

combination is a binary image in which, a pixel is 

considered as lesion if the corresponding pixel in at least 

𝑛 out of 𝑚 output images are recognized as lesion. 

2. 6. Combining Networks in the Second Stage           
Similar to the normalization stage, in order to increase 

the accuracy, combinational results of some networks 

can be used in the segmentation stage.  In our 

experiments, combination of segmentation results of 

VGG19 and Resnet50 networks in DeepLab3+ structure 

has been used to improve the overall lesion segmentation 

performance. 

 

2. 7. Evaluation Metrics             A commonly used 

metric to evaluate object detection methods is the mean 

average precision (𝑚𝐴𝑃). In our experiments, to evaluate 

performance of the normalization stage in more details, a 

metric named 𝐵𝑜𝑥𝐼𝑂𝑈 is defined as the intersection over 

union (𝐼𝑂𝑈) of the estimated bounding box with the 

correct bounding box of lesions in the ground truth: 

𝐵𝑜𝑥𝐼𝑂𝑈 =  
𝑇𝑃𝐵𝑜𝑥

𝑇𝑃𝐵𝑜𝑥+𝐹𝑁𝐵𝑜𝑥+𝐹𝑃𝐵𝑜𝑥
  (3) 

For evaluating semantic segmentation methods, the 

following metrics have been used in the literature. 

Sensitivity (𝑆𝐸𝑁) represents the rate of pixels of skin 

lesion correctly detected. On the other hand, specificity 

(𝑆𝑃𝐸) is the rate of pixels of non-skin lesions classified 

correctly [52]. The Jaccard index (𝐽𝐴𝐶) is an intersection 

over union (𝐼𝑂𝑈) of the result mask with the ground truth 

mask [53]. Index of Dice (𝐷𝐼𝐶) measures the similarity 

of classified skin lesions through ground truth [54]. 

Accuracy (𝐴𝐶𝐶) shows the overall performance of 

segmentation [53]. The Matthew correlation coefficient 

(𝑀𝐶𝐶) measures the correlation between the segmented 

and annotated pixels. 𝑀𝐶𝐶 returns values in a range of 

[−1 +1] [53]. All these criteria  are computed from the 

confusion matrix elements as follows [53]: 

𝑆𝐸𝑁 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (4) 

𝑆𝑃𝐸 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (5) 

𝐽𝐴𝐶 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
  (6) 

𝑆𝐸𝑁 =  
2.𝑇𝑃

(2.𝑇𝑃)+𝐹𝑃+𝐹𝑁
  (7) 

𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (8) 

𝑀𝐶𝐶 =  
𝑇𝑃.𝑇𝑁−𝐹𝑃.𝐹𝑁

√(𝑇𝑃+𝐹𝑃).(𝑇𝑃+𝐹𝑁).(𝑇𝑁+𝐹𝑃).(𝑇𝑁+𝐹𝑁)
  (9) 

 
 

2. 8. Results           In our experiments, cropped images 

in the normalization stage were resized to 448×448 

pixels. Due to the hardware limitation, the mini-batch 

size was set to 8 samples. Experiments were performed 

by using 6GB NVIDIA GeForce RTX2060 GPU.  
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Table 1 reports the values of the mean average 

precision (𝑚𝐴𝑃) and 𝐵𝑜𝑥𝐼𝑂𝑈 for each of the pre-trained 

networks using the Yolov3 structure in the normalization 

stage. The Jaccard index of final semantic segmentation 

is the main factor for comparison of different networks 

[32]. The values of this metric are reported in the last 

column of Table 1. The DeepLab3+ structure based on 

Resnet50 was used for segmentation in this table. 

In the segmentation stage, two pre-trained networks, 

VGG19 and Resent50 were used in the DeepLab3+ 

structure. For an input image, by considering eight input 

modes and two segmentation structures, totally 16 output 

images were achieved. In the final output binary image, 

𝐼𝐵𝑊, a pixel was considered as lesion if at least it was 

recognized as lesion in 6 out of 16 output images as 

follows: 

𝑝𝑟  (𝑥 , 𝑦) =  
1

16
 [∑ ∑ 𝑜𝑖𝑗 (𝑥, 𝑦)7

𝑗=1
2
𝑖=1 ]  (10) 

𝐼𝐵𝑊 (𝑥 , 𝑦) =  {
1               𝑝𝑟(𝑥, 𝑦) ≥ 𝑃0

0                                𝑒𝑙𝑠𝑒 
  (11) 

where oij is the binary output image of i-th network 

corresponding to the j-th mode of the input image and 

𝑃0 =
6

16
. Table 2 provides the results of various 

combinations of networks in the normalization and 

segmentation stages. A comparison among various 

methods based on 7 evaluation metrics are given in 

Table 3. In the proposed method I, Yolov3 structure 

based on VGG19, and DeepLab3+ structure based on 

Resnet50 were used in the normalization and 

segmentation stages, respectively. The first and second 

combination    approaches    were    employed     in    the 
 

 
TABLE 1. Performance of different Yolov3 structures based 

on various pre-trained networks 

Backbone network 

of the Yolov3 
mAP (%) 

Mean 

BoxIOU 

(%) 

Overall 

segmentation 

Jaccard (%) 

Vgg 19 91.36 79.62 79.12 

Resnet 101 90.55 77.97 78.92 

Vgg 16 91.85 79.03 78.79 

Resnet 50 90.68 78.93 78.77 

Resnet 18 90.87 78.04 78.43 

Densenet 201 90.68 78.86 78.40 

Mobilenet v2 88.99 78.00 78.04 

Shufflenet 89.49 77.52 78.04 

Alexnet 88.87 75.81 77.75 

Googlenet 84.69 74.06 76.31 

Squeezenet 59.48 54.98 59.26 

Xception 51.57 48.46 54.21 

Inception v3 45.29 44.46 50.15 

TABLE 2. Performance of different combinations of Yolov3 

structures in normalization stage and different combinations of 

DeepLab3+ structures in segmentation stage 
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* * * * *  *  93.09 80.24 *  79.52 

* * * * * * *  92.92 80.40 *  79.48 

* * * *   *  92.20 80.09  * 79.49 

* * * *   *  92.20 80.09 * * 79.77 

* * * *    * 92.29 80.31 * * 79.96 

 

 
normalization stages of the proposed method II and the 

proposed method III, respectively. The segmentation 

stages of the proposed method II and proposed method 

III consisted of the combination of two DeepLab3+ 

structures based on VGG19, and Resnet50. 

 
 

3. DISCUSSION 
 
In this paper, a method based on deep learning was 

proposed to segment lesions from dermoscopic images. 

Deep neural networks require many training images due 

to a large number of trainable parameters. 

In applications for which enough training images are 

not available, two general techniques are used to 

compensate the lack of enough training data: data 

augmentation and transform learning. In this paper, for 

the data augmentation, rotation, horizontal, and vertical 

flips, image resizing with the ratio between 0.8 and 1.2, 

and brightness alteration were randomly applied to the 

training images and the augmented training set consisted 

of 8000 images. 

In the proposed method, by adding the normalization 

stage prior to the segmentation stage, the inputs of the 

segmentation stage contained normalized lesions with far 

fewer varieties in size and location. This caused 

reduction in complexity of the training procedure in the 

segmentation stage and improved the segmentation 

performance.  As can be observed in Table 1,  the use of  
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TABLE 3. Comparison among various methods based on different metrics 

 SEN SPE ACC MCC AUC DIC JAC 

Yuan et al. [24] 82.50 97.50 93.40 - - 84.90 76.50 

Li et al. [22] 82.00 97.80 93.20 - - 84.70 76.20 

Bi et al. [23] 82.20 98.50 93.40 - - 84.40 76.00 

Lin et al. [21] - - - - - 77.00 62.00 

Al-masni et al. [8] 85.40 96.69 94.03 83.22 91.04 87.08 77.11 

Baghersalimi et al. [25] - - - - - - 78.30 

Tang et al. [27] 89.53 96.32 94.31 - - 86.93 79.26 

Hasan et al. [26] 87.5 95.5 - - - - 77.5 

Proposed method I 88.90 95.47 93.94 83.53 92.17 87.01 79.12 

Proposed method II 89.07 96.01 94.26 84.19 92.54 87.46 79.77 

Proposed method III 89.21 96.08 94.29 84.35 92.61 87.57 79.96 

 

 

  

Figure 4. Distributions of BoxIOU (Detection Jaccard index) and overall Jaccard index obtained by Yolo-Squeeznet and DeepLab-

Resnet50 respectively in the normalization and segmentation stages 

 
 

  

  

  
Figure 5. Distributions of 𝐵𝑜𝑥𝐼𝑂𝑈 (Detection Jaccard index) and overall Jaccard index obtained by different combinations of 

networks in the normalization and segmentation stages 
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inappropriate pre-trained networks in the normalization 

stage considerably reduced the overall performance. 

The 𝑚𝐴𝑃 values of the detection stage associated 

with some pre-trained networks such as Sqeezenet, 

Xception, and Inception v3 were obtained lower than 

60%. The reason is that these networks had been 

particularly trained and optimized for mobile 

applications [39]. 

Further, Table 1 indicates that the final segmentation 

performance is proportional to the performance of the 

normalization stage. In other words, in cases where the 

value of 𝑚𝐴𝑃 was achieved considerably larger than 

other cases, the value of final Jaccard was definitely 

greater.  

To illustrate the effect of the normalization stage on 

the performance of our overall lesion segmentation 

method, distributions of 𝐵𝑜𝑥𝐼𝑂𝑈 and overall Jaccard 

index method have been shown in Figures 4 and 5. In 

each row of these figures, similarity between 

distributions of 𝐵𝑜𝑥𝐼𝑂𝑈 and overall Jaccard index 

demonstrates that the performance of the overall 

segmentation is highly affected by the performance of the 

detection in the normalization stage.  

The use of the Yolo structure in the normalization 

stage made it possible to apply valid score values of the 

detection for combining the outputs of several networks. 

The results in Table 2 indicate that by combining four 

networks of Yolov3 based on the Resent and VGG 

networks, the value of 𝑚𝐴𝑃 in the normalization stage as 

well as the final Jaccard index is increased.  

The left and the right images in Figure 6 are 

respectively the results of the normalization stage and the 

final segmentation results of four difficult sample 

images. The proposed method could not correctly 

segment the lesions in these images and their Jaccard 

values have been obtained lower than 20%. As can be 

observed in the left column of Figure 6, the main reason 

of low segmentation accuracy of these images is that the 

proposed method could not accurately detect the lesion 

area in the normalization stage. 

In Figures 6 and 7, rectangles with solid red and green 

lines are the estimated and the correct bounding boxes, 

respectively. The red rectangles with dashed lines are the 

extended estimated bounding boxes, which have been 

cropped and resized to enter the segmentation stage.  

From the images in the right side, the green, red, 

yellow, and black areas respectively represent TP, FP, 

FN, and TN of the confusion matrix. In the first and 

second rows of Figure 6, the detected lesions were much 

wider than the correct lesions. In the third and fourth 

rows, the lesions have been detected smaller than the 

correct ones. As can be observed, segmentation of lesions 

in these images are very difficult even for experts. 

On the other hand, four difficult images for which the 

Jaccard values have been obtained greater than 85% are 

illustrated in Figure 7. 

  

  

  

  
Figure 6. Four difficult sample images that have not been 

accurately normalized and segmented 
 

 

  

  

  

  
Figure 7. Four difficult sample images that have been 

accurately normalized and segmented 
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In these sample images, very small and very big 

lesions, lesions with low-contrast boundaries, various 

lesion locations, and existence of hairs and regions 

similar to lesions are the main challenges. However, the 

proposed method accurately detected and segmented the 

lesions. 

The best results were obtained by using our combined 

Yolov3 structure in the normalization stage. The second 

combination approach in the normalization stage 

performed better compared to the first approach. The 

reason is that in the second approach, the combined 

structure was trained to combine the results of the Yolo 

networks. While in the first approach, the combination 

was performed without any learnable parameters. 
 
 

4. CONCLUSION 
 
Developing a highly accurate lesion segmentation system 

considerably helps dermatologists to diagnose skin 

cancer in a timely and correct manner. In this paper, a 

two-stage model was presented to improve the 

performance of skin lesion segmentation. In the proposed 

method, the images entered the normalization stage, in 

which the variety of sizes and locations of the lesions in 

the input images were reduced. A novel combined 

Yolov3 structure was proposed to combine results of four 

Yolov3 networks. The output of the normalization stage 

was an image, in which the lesion was approximately 

located in the centre and had a predefined size. The 

normalized images in the first stage were imported into 

the second stage. The segmentation stage consisted of a 

combination of two CNNs in the DeepLab3+ structure. 

The main reason of applying the normalization stage 

before the segmentation part was that the segmentation 

methods are generally sensitive to the size and location 

of objects. The varieties of sizes and locations of objects 

in images complicate the training of the model. 

Normalization of the images greatly improved the 

performance of the proposed lesion segmentation 

method. 
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Persian Abstract 

 چکیده 
تنوع شکل، اندازه، رنگ و محل  لیمهم است. به دل اریبس مارانیاز مرگ ب یریو درمان به موقع سرطان پوست و جلوگ صیتشخ در یپوست ریاز تصاو عات یضا قیدق جداسازی

  عات یضا  یجداساز  یبرا  یروش دو مرحله ا  کیمطالعه،    نی. در اشودمحسوب میچالش  یک  همچنان    یپوست  عات یخودکار ضا  یجداساز  ،یدرموسکوپ  ریدر تصاو  عات یضا

  رامون یپ  ریتصوریز  کیشود.  زده می   نیتخم  یچشیپی  عصب  های  توسط شبکه  عهیضا  یب یتقر  یمکان  تیشود. در مرحله اول، اندازه و موقع ارائه می   قی عم  یریادگ یبر    یمبتن  یپوست

از    عهیضا  قیدق  هیناح   یشود. به منظور جداسازنرمال می   ،شده  نییتع   شیاز پ  با ابعادِ  ریتصو  کیشده و به    جدا  یاصل  ریاز تصو  عه،یبر ضا  طیمح  یزده شده  نیتخم  لِیمستط

  ش یمنظور افزا  بهدارد.    ییبسزا  ر یتاث  ییبر عملکرد نها  ی. دقت مرحله نرمال سازرندیگمورد استفاده می    DeepLabدر ساختار    یچش یپ  ی عصب  ینرمال شده، شبکه ها  ریتصو

توسط   یجداساز جینتاپیشنهاد می شود.   Yolov3دو روش به منظور ترکیب ساختارهای شود. استفاده می  Yolov3چهار شبکه در ساختار  ب یاز ترک ،یدقت مرحله نرمال ساز

  ی است. برا  یآموزش ریوجود تعداد کم تصاو نهی زم ن یاز چالشها در ا گر ید یکی. ابدیبهبود  زی قت مرحله دوم نشوند تا دمی  بیبا هم ترک زی ن +DeepLab3دو شبکه در ساختار 

در هر مرحله از    ریتصو  کیمختلفِ    یمودها   یریبه کارگ  نیموجود و همچن  ریدر تصاو  یراتییتغ   جادیبا ا  یآموزش  ریاضافه کردن تعداد تصاو  یاز راهکارها  ،مساله  نیا  غلبه بر

دهد که  نشان می  شهایآزما  جیشوند. نتاانجام می  ISBI 2017مجموعه داده شناخته شده    یبر رو  شهای، آزمایشنهادیروش پ  یابیشود. به منظور ارزاستفاده می   یشنهادیروش پ

 کند.موجود ارائه می یروشها ینسبت به تمام  یعملکرد بهتر یشنهادیروش پ
 


