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Machine Leamning (ML) based condition monitoring and fault detection of industrial equipment is the
current scenario for maintenance in the era of Industry-4.0. T he application of ML techniques for
automatic fault detection minimizes the unexpected breakdown of the system. However, these technicues
heavily rely on the historical data of equipment for itstrainingwhich limits its widespread application
in industry. As the historical data is not available for each industrial machine and generating the cbta
experimentally for each fault condition is not viable. T herefore, this challenge is addressed for gear
applicationwith tooth defect. In this paper, ML algorithms are trained using simulated vibration data of
the gearbox and tested with the experimental data. Simulated data is generated for the gearbox with
different operating and fault conditions. A gearbox dynamic model is utilized to generate simulated
vibration data fornormal and faulty gear condition. A pink noise is added to simulated data to improve
the exactnesstothe actual field data. Further, these simulated-data are processed using Empirical Moce
Decompositionand Discrete Wavelet Transform, and features are extracted. These features are then fed
to the training of different well-established ML techniques such as Support Vector Machine, Random
Forest and Multi-Layer Perceptron. To validate this approach, trained ML algorithms are tested using
experimental data. Theresults showmorethan 87% accuracy with all three algorithms. The performance
of the trained model is evaluated using precision, recall and ROC curve. These metric show the
affirmative results for the applicability of this approach in gear fault detection.
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NOMENCLATURE
I . Torsional damping of flexible coupling
Im /1 /1y/19  Massmomentof inertia of rotor/load/pinion/gear Cplcy Input/Output
M{ /M, Input/Output torque from Motor/Load ki /ko Vertical Radial stiffness of bearing Input/Output
L Vertical Radial viscous damping coefficient of
my /my Mass of pinion/gear c/co bearing Input/Output .
Rog /Rop Base circle of pinion/gear yilys (Ij_ilrr;ecetlirodrllsplacement of Pinion/Gear in they-
kp kg Torsional stiffness of flexible coupling Input/Output On!6y 16,165  Angular displacement of motor/load/pinion/gear

1. INTRODUCTION

these conditions causes gear to degrade and leads to the
failure. Failure of gear causes the transmission system

Rotating machinery are the most essential systems of the
industrial machinery. Gearboxes are the most widely
used sub-systems of the rotating machinery that are
vulnerable to failure and system breakdown. As they
operate under harsh operating conditions, which may
develop fault on gears. Also, continuous operation under
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breakdown, production and economic loss.

Different maintenance strategies such as breakdown
or unplanned, preventive or scheduled and Condition
Based Maintenance (CBM) are employed to ensure the
satisfactory operation of rotating machinery over its
useful life. Earlier was the breakdown or unplanned
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maintenance in which maintenance is carried out only at
the breakdown; preventive or scheduled maintenance
was carried out at predefined intervals, and CBM was
carried out based on the information on the condition of
machine [1]. Out of this CBM strategy gained popularity
in the industry as it avoids unnecessary maintenance. In
current Fourth Industrial Revolution (i.e. Industry 4.0)
for industry equipment maintenance, machine learning
based condition monitoring system are being developed
for automatic fault diagnosis [2]. Machine learning has
been applied notonly in industry equipment maintenance
butalso in different fields such as roadways maintenance
[3], predicting student grades [4] etc.

Vibration analysis is a most widely used condition
monitoring technique for gear fault daignosis. In
literature two approaches have been used for the gear
fault diagnosis, one is data driven approach and other is
physical model based approach. The data-driven
approach purely rely on the historical or in-service data
of gearbox to predict the faults in gear, and physical
model based approach makes use of physics based
models to create a virtual systemto mimic the vibration
characteristics of gearbox under different operating
conditions [5]. Subsequent section discusses the
literature on these two approaches.

Several researchers have used Machine Learning
(ML) techniques for developing automatic fault detection
of industrial machinery based on the data driven
approach. Recently, Lei et al. [6] presented a review of
different ML techniques employed for machine fault
diagnosis. To develop a fault diagnosis technique based
on the data driven approach using the ML techniques,
require a historical data of in-service equipment or
experimental data to train the ML algorithms. ML
techniques like Support Vector Machine (SVM), k-
Nearest Neighbour (KNN), Artificial Neural Network
(ANN) Ensemble techniques etc. [6] have been employed
for the bearing and gear fault diagnosis. Samanta [7] used
this approach for the binary classification (i.e. healthy
and faulty) of gear using SYM and ANN. In this input
features were selected and optimized using the genetic
algorithm, SVM resulted in better classifier over the
ANN. Similarly, Samanta et al. [8] used three different
ANN classifiers suchas Multi-Layer Perceptron (MLP),
Radial Basis Function Network and Probabilistic Neural
Network for the bearing fault classification. Using
genetic algorithm and Probabilistic Neural Network a test
accuracy of 100% was obtained. Further, the
effectiveness of pre-processing of data using Discrete
Wavelet Transform (DWT) on the classification by SVM
and ANN was studied by Tyagi and Panigrahi [9], and
results show that pre-processing improves the
performance of both the classifiers and that SVM
outperforms ANN. Discrete wavelet transformand multi-
layer perceptron was used by Sanz et al. [10] to determine
the gear condition status and the model is able to predict

1% decrease in the mesh stiffness. Shen et al. [11] useda
transductive SVM for gear fault classification for data
having more numbers of unlabeled data than labelled
data; in this features were extracted using Empirical
Mode Decomposition (EMD). Shao et al. [12] also
utilized an EMD technique with higher-order cumulant
method for gear fault classification and developed a
virtual system for gear damage detection. Li et al. [13]
proposed a bearing fault detection method using
Improved lIterative Windowed Interpolation Discrete
Fourier Transform technique. For the combined gear and
bearing fault detection Dhamande and Chaudhari [14]
proposed that, features extracted using continuous and
discrete wavelet transform have been more prominent in
detecting the combined fault than time and frequency
domain features. A highestaccuracy of 90% and 97% for
training and testing respectively was obtained using the
SVM. Attaran et al. [15] developed bearing fault
detection technique based on kurtogram in time-
frequency domain using ANN. A 100% training accuracy
was noted for ANN. Bajric et al. [16] used features
extracted using the discrete wavelet transform and time
synchronous averaging method for a wind turbine
gearbox fault detection. Researchers have also utilized
ensemble techniques such as Random Forest (RF) for the
fault classification. Han and Jiang [17] used RF classifier
for the bearing fault classification; in this the variational
mode decomposition and autoregressive model
parameters have been employed for the fault feature
extraction. Cerrada et al. [18] utilized RF classifier for
the gear fault classification and used a genetic algorithm
to select the best features and a best precision value of
0.9781 was obtained. Patil and Phalle [19] have used
Random Forest, Gradient Boosting Classifier and Extra
Tree classifier ensemble techniques for the bearing fault
classification, in this features were ranked using decision
tree and randomized lasso feature ranking technique and
fed to these classifiers. Results showed that the features,
ranked using DT technique, when fed to the classifier
provided better accuracy compared to randomized lasso
with fewer features and execution time. A highest
accuracy of 98.21% was recored using DT ranking
technique. In literature cited above fault diagnosis system
was developed based on the data driven approach and
utilized an experimental testrig to generate the training
dataset for the training of ML algorithms.

In physicalmodel based approach, dynamic model is
used to mimic the actual operating conditions of the
gearbox, and vibration response of gearbox under
different conditions can be studied theoretically.
Numerous dynamic models of the gearbox have been
developed by researchers to study the vibration
characteristics of the gearbox under healthy and faulty
gear conditions. Liang et al. [5] presented a review of
different gearbox fault dynamic models developed. The
vibrations in gears are caused due to fluctuation in
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applied load, speed and Time-Varying Mesh Stiffness
(TVMS), transmission errors etc. When faulty tooth
engages the TVMS changes, due to this change in
vibration response is observed. Therefore, the calculation
of the TVMS for normal and faulty gear condition is
essential. Researchers have developed different
analytical methods such as potential energy, square
waveform and finite element method for calculating the
TVMS [5]. For obtaining the vibration response different
models have been developed. Bartelmus [20] developed
a dynamic model having 8-Degrees of Freedom (DoF)
incorporating torsional and lateral motion and friction.
Howard et al. [21] developed a 16-DoF model to study
the effect of crack on gear tooth and friction between the
tooth in contact on the vibration response. Abouel-seoud
et al. [22] developed a model for wind turbine gearbox
having twelve DoF to study the vibration response of
gearbox under three faults like crack, spall and tooth
breakage. A single-stage spur gearbox model
incorporating the gyroscopic effect was developed by
Mohammed et al. [23]. Literature cited above discusses
the use of physical model based approach in gear fault
diagnosis and the study is limited to calculating TVMS,
obtaining the vibration response under different fault
conditions and identifing the most sensitive condition
indicators. The vibration response obtained using
dynamic model is not having any noise, but in actual
practice vibration response is masked with the
environmental noise and determining the fault in such
noisy data using the condition indicators is not possible.

It is clear that for the application of the data driven
approach historical data is required for training of ML
algorithm and in physical model based method study is
limited to calculating TVMS, obtaining vibration
response under different fault conditions and determining
sensitive condition indicators. But these condition
indicators does not perform well in case of actual
vibration data.

Most of the studies reported in the literature for fault
diagnosis of mechanical components using ML
techniques have been utilizing a data-driven approach.
The dependence of this approach on historical data from
in-service equipment or data from the experimental test
setup to train the ML algorithm restricted its full spread
implementation in industrial machinery fault diagnosk.
As in-service data for the equipment is not available and
generating data using experimental test rig is not viable.
Also, the cost associated with creating the data for each
fault and at different operating conditions is very high;
and model trained using these data are often valid for the
condition and machine for which the data is collected.
Also, training of ML algorithms are dependent on the
diversity of data ie. data at different operating
conditions, more diverse data better is training. But
generating this kind of diverse data experimentally is not
feasible. Therefore, an alternative approach is required to

overcome this limitation of the data driven approach and
generate the diverse data with minimum cost.

The present paperaddresses the limitation of the data-
driven approach by employing a dynamic model of
gearbox to generate the training dataset that includes the
extensive variety of operating and fault conditions, for
the training of ML algorithm. The data is generated by
simulating the actual conditions of the gearbox therfore
this approach is called as a simulation driven approach.
In this a single-stage spur gearbox dynamic model is
employed to generate simulated vibration acceleration
data for different gear conditions (normal and faulty) at
different loads and speeds. ODE15s solver function in
Matlab is used to solve the equations of motion to obtain
the simulated vibration response. Pink noise is added to
simulated datato improve its exactness to the actual field
data. These data are then processed using the DWT and
EMD signal processing techniques, and features are
extracted to create a training dataset. Various extensively
used ML algorithms like SVM, MLP and RF are trained
using this simulated training data set and tested using the
experimental data.

2. METHODOLOGY

Figure 1 shows the schematic of the methodology of the
simulation-driven approach adopted for gear fault
detection. The simulation-driven gear fault diagnosis
approach proposed in this work involves obtaining
vibration acceleration data for normal and faulty gear
conditions at different loads and speeds using the sixDoF
gear dynamic model. Pink noise is added to obtained
simulated vibration data to improve the exactness

Generated Simulation vibration

Data for different Gear condition Adding Nolse to Skmuiaten

Vibration Data
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Simulated Data Noise

Feature Extraction

Experimental Data for Testing
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Set-up Signals mLP S RF
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Figure 1. Schematic for Simulation Driven Fault Detection
M ethodology
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towards the actual vibration data. Discrete Wavelet
Transform (DWT) and Empirical Mode Decomposition
(EMD) are used to process these vibration signals, and
then statistical features are extracted. Using these
features training data set is prepared and fed for the
training of ML algorithms such as SVM, MLP and RF.
To test this simulation-driven approach experimental
data is collected from the experimental test rig. This
experimental data is processed similarly as simulated
dataand features are extracted to prepare the testing data.
Also, the theoretical background of signal processing and
ML techniques used in this study are presented in this
section.

2. 1. Discrete Wavelet Transform (DWT) DWT
is an effective tool for signal and image processing in a
wide range of research as well as in industrial
applications [14,16]. The wavelet transform gives both
frequency and time domain information aboutthe signal.
The continuous wavelet transform of signal x(t) is

W, (.5)= 1 xOhw 50k o

where i) is a conjugate Of%,s(t)' that is the scaled

and shifted version of the transforming function, called a
mother wavelet which is defined as:

vesl) =5 @

The transformed signal is a function of translation (7)
and scale (s) parameters. Other wavelet functions can be
derived using the mother wavelet. Scale and translation
correspond to frequency band and time information
respectively in the transform domain. The DWT s
derived from the discretization of w,, (z,s) given by

: 1 @ t—2Jk
owtii- £ § x(t»( 2 Jm @
Vector A and D are obtained by passing the signal x
through low and high pass filters. approximate and
detailed coefficients are obtained by downsampling these
vectors. By repeating the process of decomposition using
the approximate coefficients, different levels of DWT
coefficients can be obtained.

Researchers have used different mother wavelet
functions and levels of decomposition in bearing and gear
fault diagnosis. In this study, db5 is used as a mother
wavelet function and 3rd level decomposition for gear
fault diagnosis.

2.2. Empirical Mode Decomposion (EMD) EMD
is an effective adaptive signal processing technique.
Finite numbers of intrinsic mode functions (IMF) can be
obtained by decomposing complicated data [24, 25]. A

number of extrema and zero crossings are same for linear
or non-linear mode. The procedure for obtaining these
IMF’s from a given signalis as follows.

Firstly, all the local extrema are determined, and a
cubic spline curve is employed to connect all the local
maxima to obtain the upper envelop and all local minima
to obtain the lower envelop. The entire signal should be
enclosed by these upper and lower envelops. A mean of
upperand lower envelop is m; and the difference between
the x(t) and my gives the first component h

X(t)-my =My )

If hyis an IMF, then hy is the first component of x(t). If hs
is not an IMF, the above procedure is repeated
considering hi as original signal

b —myg=hyg ()
After sifting for k times, hik becomes an IMF, that is
M(k-1)—Mk =Mk =1 (6)

c1 is thefirst IMF component obtained from the original.
Separating c1 from x(t), We get

n=x{t)-c )

Now, r1 is considered as the original signal and the
process described above is repeated n time to obtain n-
IMFs of signal x(t).

xt)= 3 cj+h ®)

j=1
The above procedure is repeated till r» becomes a
monotonic function from which no more IMFs can be
drawn out.

Thus, decomposition of the signal results into n-
empirical modes and a residue rn. Where ry is the mean
trend of x(t). The IMFs contain different frequency bands
and the components of frequency included in each
frequency band are different, and they change with the
variation of signal x(t), rn represents the central tendency
of signal x(t).

2. 3. Machine Learning Techniques In the
present work Support Vector Machine, Multi-Layer
Perceptron and Random Forest, widely used and popular
ML techniques are utilized for the gear fault
classification.

2. 3. 1. Support Vector Machine (SVM) SWM is
a supervised ML technique employed for the
classification and regression in the small sample dataset.
In SVM classifier, data is separated by a decision
boundary known as the hyperplane such that the margin
of separation between two classes is maximized and
points that decide the margin are called as support vectors
as shown in Figure 2.
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N hix+b=1}
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Figure 2. Hyperplane classifying two classes

This is done by minimizing the quadratic function under
linear inequality constraints. Consider a training sample
set {(xi, yi) }; i=1 to N, where N is the total number of
samples. It is to determine the separation plane with the
smallest generalization error. The labels associated with
the two classes, i.e. triangle and circle class are y, =1

and y, =+1 respectively. Slack variables are considered

& >0 for non-separable data. The hyperplane f(x) = 0 that
separates the given data can be obtained as a solution to
the following optimization problem [4].

N
Minimize %||w||2 +C Y& Subject to
i=1

9
{ Yi (WT_Xi +b)21—§i
£20,i=1,2,..N
where, C is a constant representing error penalty
2. 3. 2. Multi-Layer Perceptron (MLP) MLP is a

type of Back Propagation Artificial Neural Network
which includes an input layer, output layer and two or
more weighted perceptron (hidden layers) [8]. The
targets of each layer are characterized by a function, and
subsequently, the targets of preceding layers are served
as inputs to the succeeding layer. Each layer consists ofa
specific number of neurons which carry information to
neurons of subsequent layers.

For  example, consider a  training  set
(x],v/) with N features and M samples where i=1, 2,
3,..Mandj= 1, 2, 3,...N. The first layer will consist of N
neurons with each j" neuron containing M samples of j"
feature. Neurons in subsequent layers are also fixed
accordingly (with an additional node neuron), but the last
layer will have only one neuron for regression model and
for the classification problem number of neurons will be
equal to a number of classes. The parameter which
controls the mapping of information from one layer to

another, say @ is multiplied with training samples Xij

and the resultant matrix multiplication is fed as a
parameter to the function. For example, aneuron a; ofthe
second layer is represented as:

= 1lg7 x4 (10)

where, f is the sigmoid function.

Hence, the prediction is given by aL. To minimize the loss
function, this is followed by back-propagation method
wherein another parameter say 0 is computed for each
layer with the help of gradient descent. The values of 0
are computed from the last layer to the first layer and are
updated by means of gradient descent. Also, for the last
layer:

o =(a_-y) (11)

where, y is the target.
The following layers are given by:

o1 =[o ] *or *llag4)*0-a )] (12)

where, [(a 4)*(-a__4)| is the differentiated term of the

sigmoid function. Hereafter, the product of two 0 and a
are computed to add over each iteration to get the
gradient which will minimize the loss function. This
process is done with regularization.

Hence the ‘accumulator’ ie. W (i.e. the

derivative of loss function) is given by:
1
D = 1 (4§ )+ afD (13)

where, o is the regularization parameter and M is the
number of samples.

Also, initially A(,J-L)=0and it is updated as follows:

A(L) = A(L) +0L1* [a,_ ]T (14)

The accumulator i.e. D is added over each step to
minimize the loss function and get better value of
prediction i.e. aL.

2. 3. 3. Random Forest (RF) is a polpular
ensemble machine learning technique, in which many
decision trees are built on bootstrapped sample same as
bagging from training dataset and to get the output
prediction, prediction from each tree is averaged in case
of regression and majority voting in case of
classification. RF is betterthan a single decision tree and
reduces the over-fitting by averaging. High variance and
low bias of decision trees make it unstable. RF consists
of bootstrap aggregating (bagging) with a randomized
selection of features at each split. A bootstrap
aggregating algorithm improves the stability and
accuracy of an individual predictive model [18,19].
Consider A, number of trees generated by the random
forest. Using bootstrap sampling, select the subset from
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the training dataset. For each subset grow tree {ti(x),
t2(X),.....ta(x)} where x € {x1, x2, . .., xn}. X iS an n-
dimensional feature vector, and this feature vector is
prepared by randomly selecting n features from a total of
N features. Using the Gini impurity (lg) pick a node e out
of those n variables for the best split point.

)
Ig(p)=1- ZRa (15)
a=1
where, a is the number of classes (a=1, 2, 3, ...., b) and

Ra is the fraction of instances tagged with class a. Then
split the node into two daughter nodes and repeat the
above procedure for growing A number of trees. Yi,
Yo,....Yk is the output of thesetrees, where k{1, 2, . ..
, A} is the prediction for a classified object by the k" tree,
and a collection of all individuals make a final
classification decision.

3. SIMULATION DRIVEN APPROACH

In the present work, a model developed by Bartelmus
[20] is used to obtain the vibration response. The model
includes both torsional and lateral motions. In this
gearbox, the casing is assumed as rigid so as vibration
propagates linearly along the casing. Figure 3 depicts the
model used in this work.

In this model the systemis rotated by a motor and a
load torque is applied at the output. M1 and M2 are the
motor and load torque, respectively. Flexible couplings
are used to connect the motor shaft and input shaft on
which pinion is mounted, and load shaft and shaft on
which gear is mounted. Shafts containing pinion and gear
are mounted on bearings, and these bearings are mounted
on the rigid casing. A model consists of two parameters
stiffness and damping and includes both linear and
rotational (lateral and torsional) equations of motion.
Equations (16)-(23) represent the equations of motion

Figure 3. Single-stage ;;')”L‘J‘rmg']éarbox model [20]

for the systemshown in Figure 3. x - direction vibration
response is a free response (Equations (16) and (17)).
When the systemis stable responsein this direction will
disappear; therefore, vibration in y - direction is
considered here to getthe response of healthy and faulty
gears. Single fault on a single pinion tooth is considered
for obtaining vibration response for faulty gear condition.
Vibration response of faulty gears includes responses of
gearbox having faults such as spalled, cracked and
chipped gear tooth. Firstly, TVMS of normal and faulty
conditions is calculated using the potential energy
method presented in [26-28]. The value of calculated
TVMS which act as an internal excitation, is considered
while obtaining the vibration response.

Mm% =—Kx1X —CxaX1 (16)
MoXy =—Ky2Xp —Cyx2Xp 17
M1 +cyr+keyr =R —Fe (18)
Mz +Ca¥2 +koyp =R + Fe (19)
|1él:kp(9m‘91)+cp(9m ‘91)‘ R (Fi + Fe) (20)

1265 =Ry (F + Fc)—kg (62 — 6 )—cg (92—90) (21)

i =My ~Kp 6 ~60)-Cp by 1) 22)
Ipth =—M2+kg(92—9b)+cg(92—9n) (23)
Fi =kt (Ro1601 — Roata + Y1 - ¥2) (24)
Fe =t (Rt — Ro26 + Y1 - ¥2) (25)

The gear parameters utilized in this model to obtain
the simulated vibration data are given in Table 1. Figure
4 (a-b) shows the sample of TVMS obtained for normal
and faulty gear conditions respectively for one rotation of
pinion. The equations of motion (Equations (18)-(23))
are solved simultaneously using ODE15s solver function
in Matlab to obtain the vibration response. The vibration
response is obtained for different load and speed
conditions. Figure 5 (a-b) shows the vibration response
obtained at 1800rpm for normal and faulty gear
condition, respectively for 0.1 s.

To increase the exactness of simulated vibration
signals with the actual field data noise is added to the
simulated response. A pink noise (1/f power spectrum) is
added, as pink noise is present everywhere in nature,
electronics, machinery, and numerous other fields [29].
Chen et al. [30] used this pink noise power spectrum to
generate the bearing signals. Randomly this noise is
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TABLE 1. Gear parameters for simulated data

Gear Parameter Value
Number of teeth on Pinion/Gear Np =19, Ny =48
Pressure angle 20°
Diametral Pitch P=0.2032m?
Width of Teeth L=0.16 m
Contactratio C; =1.6456
Young’s Modulus E =2.068 x 10! Pa
Poisson’s Ratio v=0.3

Mass of the Pinion/Gear

Mass moment of inertia ofthe
Pinion/Gear

Mass moment of inertia ofthe
motor/Load

Tortional stiffness of the coupling

Damping coefficient of the
coupling

Radial stiffness of thebearing
Damping coefficient of the

m,=0.96 kg, mg=2.88 kg
I, = 4.3659 x 10 kgm?
Iy =8.3602 x 10 kgm?

Im = 0.0021 kgm?
I, = 0.0105 kgm?

ko =kg= 4.4 x 10* Nm/rad
Cp =Cy= 5.0 x 10° Nm/rad
ki =k.=6.56 x 10" N/m

€1 =C,= 1.8 x 10° Ns/m

bearing
Rp1=10.02834 m,
Rp2=0.0716 m

Base circle radius of Pinion/Gear

Two teeth pairsin

E 1E+9
=, 9E+8
£ BE+8
@D T7E+8

oEve Single todth bair ih contact

SEx8 60 120 180 240 300 360

Angle (deg)
(a) Gear with no fault

1.26+9 - Two teeth gaemegn contact

Stiffness (N/m
®
m
+
o«

Angle (deg)

(b) Gear with fault
Figure 4. Time Varying Mesh Stiffness (TVMS)

added to simulated vibration signals so that S/N ratio can
range from 1 to 30.

4. EXPERIMENTAL TEST RIG

To validate the simulation-driven approach ML
algorithms trained using the simulated training data is to
be tested using the experimental data. For the broader

V. C.Handikherkar and V. M. Phalle / IJE TRANSACTIONS A: Basics Vol. 34, No.01, (January 2021) 212-223

40

Acceleration (m/s?)

0 0.02 0.04 0.06 0.08 0.4
Time ('Sec)
(a) Gear with no fault

Acceleration (m/s?)

0 0.02 0.04 0.06 0.08 04
Time (Sec)
(b) Gear with fault
Figure 5. Simulated Vibration Response at 1800rpm

applicability of this approach in gear fault detection,
gearbox test rig having different gear geometric
parameters than the one used to obtain the simulated data
is to be employed for generating the testing/validation
data. Figure 6 shows the gearboxexperimental setup used
to collect the validation data. Validation data for normal
and faulty conditions are collected at different load and
speed conditions. The gear test rig has spur gear having
full depth involute profile and has 25 and 61 number of
teeth on pinion and gear respectively and 20° pressure
angle, 4 mm module, 20 mm width. An electric motor
drives the pinion, and a load is applied at the driven end
using the magnetic brake. Tri-axial accelerometer
mounted on the gearbox is connected to the OROS data
acquisition system to collect the vibration data.
Validation or testing data contains an equal number of
samples of normal and faulty gear condition.

5. FEATURE ETRACTION AND SELECTION

Numerous features have been proposed in the literature
for gear fault diagnosis using time domain, frequency

Electric Motor Jf

iable F?equ
Drive
{VFD))

— Magnetic Brake

‘ Figure 6. Gearbox experimental test rig
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domain, wavelet decomposition and Empirical Mode
Decomposition etc. In the present work, wavelet
decomposition and EMD are used to process vibration
signals. A signal is decomposed in 3 levels using the db5
mother wavelet function,and also the signal is processed
using EMD to obtain the IMFs. Statistical features
Skewness, Kurtosis, Root Mean Square (RMS) Crest
Factor, Shape Factor, Impulse Factor and Clearance
Factor are extracted from all three decomposition levels
of wavelet and IMF’s of EMD. Equations (26)-(32)
presents the mathematical expression for calculating
these features.

In literature different methods of feature reduction are
available such as Principal Component Analysis (PCA),
Factor Analysis (FA), Independent component analysis
(ICA), High correlation between two columns. These
methods were utilized for feature reduction but
application of first three methods i.e. PCA, FA and ICA
didn’t yield satisfactory results. As PCA is a widely used
feature reduction technique, results obtained using this is
presented here.

5. 1.Principal Component Aanalysis (PCA) PCA
is a feature dimensionality reduction technique which is
used for the compression and classification of the data.
The dimensionality of data set is reduced by finding the
new variables that are smaller than the original data set
and retain most of the information. These new variables
are called as the principal components which are
uncorrelated.

In this paper for feature reduction high correlation
between two columns method is adopted. In which
correlation between the extracted features is determined.
Features having high correlation coefficient are linearly
dependent and have the same effect as the dependent
variable. Therefore, one of the two features having high
correlation coefficients is removed. The remaining
features are then fed one by one to ML algorithms and a
trial and error approach is adopted to select the features
giving best results. Table 2 presents a list of selected
features. The extracted features from both simulated and
experimental dataare normalized tothe zero mean andto
arange of +1 to prepare training and testing data set.

N — 3
Skewness(SK,) = % (26)
N — 4
Kurtosis(K,) = W (27)
_ Zlnv=1(a(n))z 28
Root Mean Square(a,,s) = /T (28)
Crest Factor = — (29)
Shape Factor (SF,) = —m— (30)

3 -1la@)]

TABLE 2. Selected Extracted Features

Feature Extraction
Method

Features

1*level Detailed Coefficients - Crest Factor
3" L_evel Detailed Coefficients — Skewness

3™ Level Approximation Coefficients -
Crest Factor

Wavelet Transform

IMF2 — RMS
IMF4 — RMS, Shape Factor, Kurtosis

Empirical Mode IMF6 — Clearance Factor, Impulse Factor,
Decomposition Kurtosis

IMF7 — Kurtosis
IMF8 — Shape Factor

ap

I Ise Factor(IF,)) = ———
mpulse Factor(IF ;) o laGo) (31)
a
Clearance Factor(CLF,) = ——X2—— 2
A, Tat) (32)

6. RESULTS AND DISCUSSION

A simulated vibration data is obtained for different load
and speed conditions, as described in section 3. While
getting the vibration data single fault is considered on a
single pinion tooth. Figure 4(a-b) shows the TVMS for
the healthy and faulty gear, respectively, for the one
pinion revolution. The contact ratio of gear is around 1.6,
i.e. for 60% of duration two pairs of teeth are in contact
and hence the increase in TVMS in this region. Figure
4(a) shows the TVMS for the healthy gear, which shows
a similar pattern for all the tooth engagements. However,
for the faulty case (Figure 4(b)), when faulty tooth
engages decrease in the TVMS is observed for the
duration of engagement of faulty tooth. The faulty tooth
contact region is highlighted in Figure 4(b). This change
in the TVMS affects the vibration response of the gear.
This variation in vibration response of normal and faulty
gear is clearly shown in Figure 5(a-b), respectively. In
Figure 5(b) the part of the vibration response whenever
faulty tooth engages is highlighted. As the fault is
considered on the pinion, for every pinion rotation this
faulty tooth will come in contact and hence the change in
vibration response. T in Figure 5(b) represents the time
period for one pinion rotation. To improve the exactness
of the simulated data towards the actual data noise is
added. These signals are then processed using the DWT
and EMD, and total 84 statistical features are extracted
from all levels of decomposition of DWT and IMF’s of
EMD. To reduce the dimensionality of the dataset
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Principal Component Analysis (PCA) was employed,
and ML algorithms were tested for a different number of
principal components, and its classification accuracies
were obtained. Figure 7 shows the testing accuracy
obtained for all three ML techniques for a different
number of principal components. This figure indicates
thataccuracy obtained using PCA for a different number
of components was between 65 and 78% for all three
classifiers. These accuracy values obtained using PCA
were not satisfactory. Therefore, to reduce the
dimensionality of the dataset, a different method is
utilized. In this, a correlation among the extracted
features is determined. One of the two features having
high correlation coefficients is removed as features
having high correlation coefficient are linearly dependent
and have the same effect as the dependent variable.
Remaining features are then fed one by one to train the
ML algorithm and features giving best results are
selected. Table 2 presents a list of selected features.

The ML algorithms are trained using these selected
features, and ten cross-validation accuracy is obtained.
The ML algorithm’s parameter tuning is done based on
simulated dataand a grid search algorithm. For the wider
applicability of the simulation-driven approach, ML
algorithms trained using simulated data is validated by
experimental data generated using the gearbox test rig
having different gear geometric parameters than the one
used to create the simulated data. The classifier accuracy
is a metric utilized in this study for the evaluation of the
classification algorithm. Figure 8 shows training and
testing accuracies obtained for SVM, MLP and RF
machine learning algorithms.

Training accuracy of more than 90% and testing
accuracy of more than 87% is obtained for all the three
classifiers. The highest training and testing accuracy of
95 and 90% is obtained using the RF classifier. The
values of accuracies for all three classifiers imply the
applicability of the simulation-driven approach for gear
fault detection. The performance of the proposed
simulation-driven approach is compared with the existing
data-driven approach. ML algorithms are trained and
tested using experimental data in the data-driven
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Figure 7. Testing Accuracy of ML algorithms for different
principal components
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Figure 8. Accuracies by using Simulation Driven Approach

approach. Figure 9 shows the accuracies obtained using
the data-driven approach. The accuracies obtained for all
the three classifiers using data-driven and simulation-
driven approach are comparable, and there is very little
difference in their accuracies. Therefore, the simulation-
driven approach can be applied for the gear fault
classification when actual historical data is notavailable.

Classifier accuracy is considered as a metric for the
evaluation of the ML algorithm. However, for the
complete performance evaluation of the classification
algorithm precision and recall are also evaluated.
Precision is the ratio of correctly classified positive cases
to the total number of positively classified cases and
recall is the ratio of correctly classified positive cases and
the totalnumber ofactual positive cases. Figure 10 shows
the values of precision and recall for each classifier. For
all the three classifiers precision and recall values are
more than 87%. The higher values of precision mean the
less number of instances are classified as faulty when it
is normal, thatis fewer chances of false alarms for the
maintenance and avoid undue maintenance task. The
higher value of recall increases the chances of positive
alarms as lesser instances are classified as normal when
it is faulty, to carry out the maintenance task when it is
actually required. All the three classifiers show the
considerable values of precision and recall (Figure 10),
which increases the confidence in the simulation-driven
approach presented in this paper for gear fault detection.
Precision and recall values for the RF classifier are
slightly higher than the other classifiers.

Another metric used for the evaluation of the binary
classification is the Area under the receiver operating
characteristic curve (AUC). The curve of true positive
rate Vs false positive rate at different classification
threshold values is known as the Receiver Operating
Characteristic curve abbreviated as ROC. Figure 11
depicts the ROC curve for the three classifiers. The AUC
values are 0.97, 0.92 and 0.98 for SVM, MLP and RF,
respectively. A highervalue of AUC means that classifier
is confident that randomly selected positive instance is
positive than the randomly selected negative instances as
positive. The ROC curve (Figure 11) and the AUC values
obtained for three classifiers shows the agreement with



V.C. Handikherkar and V. M. Phalle / IJE TRANSACTIONS A: Basics Vol. 34, No. 01, (January 2021) 212-223 221

| Training Accuracy
14 Testing Accuracy

Accuracy
e o
o ©

o
'S

o
N

s wmp RF
Machine Learning Algorithms
Figure 9. Accuracies by using Data Driven Approach

| Precision
| Recall

s

o o o
IS o ®
" 3 L

Precision/Recall Values

o
N

o

SVM MLP RF
Machine Learning Algorithms

Figure 10. Precision and Recall for SVM, MLP and RF

—— SVM (AUC=0.97)
= MLP (AUC=0.92)
—— RF (AUC=0.98)

0.8+

True Positive Rate

0.6

0 02 04 06 08 1
False Positive Rate

Figure 11. ROC curve for SVM, MLP and RF classifiers

the applicability of the simulation-driven approach for
the gear fault classification.

7. CONCLUSION

Condition monitoring and fault diagnosis of the gearbox
using the machine learning techniques utilize the data-
driven approach, but the requirement of in-
service/experimental data for the training of ML
algorithm has prevented its widespread application in the
industry. Also, for the better training of ML algorithm
high diverse data is required. The present paper
implements a simulation-driven approach for the spur
gear fault detection and validates this approach using the
experimental data. Simulated vibration response is
generated using a gearbox dynamic model to produce the

extensive variety of data of at different operating and
fault condition. Firstly, TVMS is calculated for normal
and faulty gear condition. TVMS is reduced when faulty
gear tooth engages, and this results in the change in
vibration response. ODE15s solver function in Matlab is
employed to solve the equations of motion to obtain the
simulated vibration response. This simulated vibration
data is not having any noise, but in actual practical
application the signal is masked with environmental
noise. Therefore, a pink noise is added to improve the
exactness of the simulated vibration signals to the actual
vibration signals. Pink noise is added because it is present
everywhere in nature, electronics, machinery, and
numerous other fields. These signals are then processed
using the EMD and DWT signal processing techniques.
Features are extracted from simulated data and fed for the
training of ML algorithm. For the wider applicability of
the simulation-driven approach, ML algorithm trained
using the simulated data is validated by using
experimental data collected from a test rig having
different gear parameters. The results show that the
simulation-driven approach gives the considerable
training and testing accuracy for all the three classifiers.
This approach is then compared with the existing data
driven approach and the results obtained are comparable.
However, the performance of the this approach can be
improved by considering the dynamic model with high
degrees of freedom and considering more effect such as
friction, gyroscopic effect etc. In the present era of
Industry 4.0 the proposed method has the potential to
improve the machine learning based condition
monitoring of the gearbox wusing simulated data.
However, the simulated data cannot replace the
experimental data, but it can serve as a starting point for
the gear fault diagnosis when no historical data is
available. The implementation of this approach will help
in monitoring the condition of the gearbox from the day
of installation.
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