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A B S T R A C T  
 

 

Machine Learning (ML) based condition monitoring and fault detection of industrial equipment is the 
current scenario for maintenance in the era of Industry-4.0. The application of ML techniques for 
automatic fault detection minimizes the unexpected breakdown of the system. However, these techniques 
heavily rely on the historical data of equipment for its training which limits its widespread application 

in industry. As the historical data is not available for each industrial machine and generating the data 
experimentally for each fault  condition is not viable. Therefore, this challenge is addressed for gear 
application with tooth defect. In this paper, ML algorithms are trained using simulated vibration data of 
the gearbox and tested with the experimental data. Simulated data is generated for the gearbox with 

different operating and fault conditions. A gearbox dynamic model is utilized to generate simulated 
vibration data for normal and faulty gear condition. A pink noise is added to simulated data to improve 
the exactness to the actual field data.  Further, these simulated-data are processed using Empirical Mode 

Decomposition and Discrete Wavelet Transform, and features are extracted. These features are then fed 
to the training of different well-established ML techniques such as Support Vector Machine, Random 
Forest and Multi-Layer Perceptron. To validate this approach, trained ML algorithms are tested using 
experimental data. The results show more than 87% accuracy with all three algorithms. The performance 

of the trained model is evaluated using precision, recall and ROC curve. These metric show the 
affirmative results for the applicability of this approach in gear fault detection.  

doi: 10.5829/ije.2021.34.01a.24 
 

NOMENCLATURE   

21 /// IIII bm  Mass moment of inertia of rotor/load/pinion/gear gp cc /  
Torsional damping of flexible coupling 
Input/Output 

21 / MM  Input/Output torque from Motor/Load 21 / kk  Vertical Radial stiffness of bearing Input/Output 

21 / mm  Mass of pinion/gear 21 / cc  
Vertical Radial viscous damping coefficient of 
bearing Input/Output 

21 / bb RR  Base circle of pinion/gear 21 / yy  
Linear displacement of Pinion/Gear in the y-

direction 

gp kk /  Torsional stiffness of flexible coupling Input/Output 21 ///  bm  Angular displacement of motor/load/pinion/gear 

 
1. INTRODUCTION1 
 
Rotating machinery are the most essential systems of the 

industrial machinery. Gearboxes are the most widely  

used sub-systems of the rotating machinery that are 

vulnerable to failure and system breakdown. As they 

operate under harsh operating conditions, which may 

develop fault on gears. Also, continuous operation under 
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these conditions causes gear to degrade and leads to the 

failure. Failure of gear causes the transmission system 

breakdown, production and economic loss. 

Different maintenance strategies such as breakdown 

or unplanned, preventive or scheduled and Condition 

Based Maintenance (CBM) are employed to ensure the 

satisfactory operation of rotating machinery over its 

useful life. Earlier was the breakdown or unplanned 
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maintenance in which maintenance is carried out only at 

the breakdown; preventive or scheduled maintenance 

was carried out at predefined intervals, and CBM was 

carried out based on the information on the condition of 

machine [1]. Out of this CBM strategy gained popularity 

in the industry as it avoids unnecessary maintenance. In 

current Fourth Industrial Revolution (i.e. Industry 4.0) 

for industry equipment maintenance, machine learning 

based condition monitoring system are being developed 

for automatic fault diagnosis [2]. Machine learning has 

been applied not only in industry equipment maintenance 

but also in different fields such as roadways maintenance 

[3], predicting student grades [4] etc. 

Vibration analysis is a most widely used condition 

monitoring technique for gear fault daignosis. In 

literature two approaches have been used for the gear 

fault diagnosis, one is data driven approach and other is 

physical model based approach. The data-driven 

approach purely rely on the historical or in-service data 

of gearbox to predict the faults in gear, and physical 

model based approach makes use of physics based 

models to create a virtual system to mimic the vibration 

characteristics of gearbox under different operating 

conditions [5]. Subsequent section discusses the 

literature on these two approaches. 

Several researchers have used Machine Learning 

(ML) techniques for developing automatic fault detection 

of industrial machinery based on the data driven 

approach. Recently, Lei et al. [6] presented a review of 

different ML techniques employed for machine fault 

diagnosis. To develop a fault diagnosis technique based 

on the data driven approach using the ML techniques, 

require a historical data of in-service equipment or 

experimental data to train the ML algorithms. ML 

techniques like Support Vector Machine (SVM), k-

Nearest Neighbour (kNN), Artificial Neural Network 

(ANN) Ensemble techniques etc. [6] have been employed 

for the bearing and gear fault diagnosis. Samanta [7] used 

this approach for the binary classification (i.e. healthy 

and faulty) of gear using SVM and ANN. In this input 

features were selected and optimized using the genetic 

algorithm, SVM resulted in better classifier over the 

ANN. Similarly, Samanta et al. [8] used three different 

ANN classifiers such as Multi-Layer Perceptron (MLP), 

Radial Basis Function Network and Probabilistic Neural 

Network for the bearing fault classification. Using 

genetic algorithm and Probabilistic Neural Network a test 

accuracy of 100% was obtained. Further, the 

effectiveness of pre-processing of data using Discrete 

Wavelet Transform (DWT) on the classification by SVM 

and ANN was studied by Tyagi and Panigrahi [9], and 

results show that pre-processing improves the 

performance of both the classifiers and that SVM 

outperforms ANN. Discrete wavelet transform and multi-

layer perceptron was used by Sanz et al. [10] to determine 

the gear condition status and the model is able to predict 

1% decrease in the mesh stiffness. Shen et al. [11] used a 

transductive SVM for gear fault classification for data 

having more numbers of unlabeled data than labelled  

data; in this features were extracted using Empirical 

Mode Decomposition (EMD). Shao et al. [12] also 

utilized an EMD technique with higher-order cumulant 

method for gear fault classification and developed a 

virtual system for gear damage detection. Li et al. [13] 

proposed a bearing fault detection method using 

Improved Iterative Windowed Interpolation Discrete 

Fourier Transform technique. For the combined gear and 

bearing fault detection Dhamande and Chaudhari [14] 

proposed that, features extracted using continuous and 

discrete wavelet transform have been more prominent in 

detecting the combined fault than time and frequency 

domain features. A highest accuracy of 90% and 97% for 

training and testing respectively was obtained using the 

SVM. Attaran et al. [15] developed bearing fault 

detection technique based on kurtogram in time -

frequency domain using ANN. A 100% training accuracy 

was noted for ANN. Bajric et al. [16] used features 

extracted using the discrete wavelet transform and time 

synchronous averaging method for a wind turbine 

gearbox fault detection. Researchers have also utilized  

ensemble techniques such as Random Forest (RF) for the 

fault classification. Han and Jiang [17] used RF classifier 

for the bearing fault classification; in this the variational 

mode decomposition and autoregressive model 

parameters have been employed for the fault feature 

extraction. Cerrada et al. [18] utilized RF classifier for 

the gear fault classification and used a genetic algorithm 

to select the best features and a best precision value of 

0.9781 was obtained. Patil and Phalle [19] have used 

Random Forest, Gradient Boosting Classifier and Extra 

Tree classifier ensemble techniques for the bearing fault 

classification, in this features were ranked using decision 

tree and randomized lasso feature ranking technique and 

fed to these classifiers. Results showed that the features, 

ranked using DT technique, when fed to the classifier 

provided better accuracy compared to randomized lasso 

with fewer features and execution time. A highest 

accuracy of 98.21% was recored using DT ranking 

technique. In literature cited above fault diagnosis system 

was developed based on the data driven approach and 

utilized an experimental test rig to generate the training 

dataset for the training of ML algorithms. 

In physical model based approach, dynamic model is 

used to mimic the actual operating conditions of the 

gearbox, and vibration response of gearbox under 

different conditions can be studied theoretically. 

Numerous dynamic models of the gearbox have been 

developed by researchers to study the vibration 

characteristics of the gearbox under healthy and faulty 

gear conditions. Liang et al. [5] presented a review of 

different gearbox fault dynamic models developed. The 

vibrations in gears are caused due to fluctuation in 
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applied load, speed and Time-Varying Mesh Stiffness 

(TVMS), transmission errors etc. When faulty tooth 

engages the TVMS changes, due to this change in 

vibration response is observed. Therefore, the calculation 

of the TVMS for normal and faulty gear condition is 

essential. Researchers have developed different 

analytical methods such as potential energy, square 

waveform and finite element method for calculating the 

TVMS [5]. For obtaining the vibration response different 

models have been developed. Bartelmus [20] developed 

a dynamic model having 8-Degrees of Freedom (DoF) 

incorporating torsional and lateral motion and friction. 

Howard et al. [21] developed a 16-DoF model to study 

the effect of crack on gear tooth and friction between the 

tooth in contact on the vibration response. Abouel-seoud 

et al. [22] developed a model for wind turbine gearbox 

having twelve DoF to study the vibration response of 

gearbox under three faults like crack, spall and tooth 

breakage. A single-stage spur gearbox model 

incorporating the gyroscopic effect was developed by 

Mohammed et al. [23]. Literature cited above discusses 

the use of physical model based approach in gear fault 

diagnosis and the study is limited to calculating TVMS, 

obtaining the vibration response under different fault 

conditions and identifing the most sensitive condition 

indicators. The vibration response obtained using 

dynamic model is not having any noise, but in actual 

practice vibration response is masked with the 

environmental noise and determining the fault in such 

noisy data using the condition indicators is not possible. 

It is clear that for the application of the data driven 

approach historical data is required for training of ML 

algorithm and in physical model based method study is 

limited to calculating TVMS, obtaining vibration 

response under different fault conditions and determining 

sensitive condition indicators. But these condition 

indicators does not perform well in case of actual 

vibration data. 

Most of the studies reported in the literature for fault 

diagnosis of mechanical components using ML 

techniques have been utilizing a data-driven approach. 

The dependence of this approach on historical data from 

in-service equipment or data from the experimental test 

setup to train the ML algorithm restricted its full spread 

implementation in industrial machinery fault diagnosis. 

As in-service data for the equipment is not available and 

generating data using experimental test rig is not viable. 

Also, the cost associated with creating the data for each 

fault and at different operating conditions is very high; 

and model trained using these data are often valid for the 

condition and machine for which the data is collected. 

Also, training of ML algorithms are dependent on the 

diversity of data i.e. data at different operating 

conditions, more diverse data better is training. But 

generating this kind of diverse data experimentally is not 

feasible. Therefore, an alternative approach is required to 

overcome this limitation of the data driven approach and 

generate the diverse data with minimum cost. 

The present paper addresses the limitation of the data-

driven approach by employing a dynamic model of 

gearbox to generate the training dataset that includes the 

extensive variety of operating and fault conditions, for 

the training of ML algorithm. The data is generated by 

simulating the actual conditions of the gearbox therfore 

this approach is called as a simulation driven approach. 

In this a single-stage spur gearbox dynamic model is 

employed to generate simulated vibration acceleration 

data for different gear conditions (normal and faulty) at 

different loads and speeds. ODE15s solver function in 

Matlab is used to solve the equations of motion to obtain 

the simulated vibration response. Pink noise is added to 

simulated data to improve its exactness to the actual field 

data. These data are then processed using the DWT and 

EMD signal processing techniques, and features are 

extracted to create a training dataset. Various extensively 

used ML algorithms like SVM, MLP and RF are trained 

using this simulated training data set and tested using the 

experimental data. 

 

 

2. METHODOLOGY 
 

Figure 1 shows the schematic of the methodology of the 

simulation-driven approach adopted for gear fault 

detection. The simulation-driven gear fault diagnosis 

approach proposed in this work involves obtaining 

vibration acceleration data for normal and faulty gear 

conditions at different loads and speeds using the six DoF 

gear dynamic model. Pink noise is added to obtained 

simulated vibration data to improve the exactness 

 
 

 
Figure 1. Schematic for Simulation Driven Fault Detection 

Methodology  
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towards the actual vibration data. Discrete Wavelet 

Transform (DWT) and Empirical Mode Decomposition 

(EMD) are used to process these vibration signals, and 

then statistical features are extracted. Using these 

features training data set is prepared and fed for the 

training of ML algorithms such as SVM, MLP and RF. 

To test this simulation-driven approach experimental 

data is collected from the experimental test rig. This 

experimental data is processed similarly as simulated 

data and features are extracted to prepare the testing data. 

Also, the theoretical background of signal processing and 

ML techniques used in this study are presented in this 

section. 

 
2. 1. Discrete Wavelet Transform (DWT)      DWT 

is an effective tool for signal and image processing in a 

wide range of research as well as in industrial 

applications [14,16]. The wavelet transform gives both 

frequency and time domain information about the signal. 

The continuous wavelet transform of signal x(t) is 

     




dtttxsW s
*
,.,    (1) 

where  ts
*
,

 is a conjugate of  ts, , that is the scaled 

and shifted version of the transforming function, called a 

mother wavelet which is defined as: 
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The transformed signal is a function of translation ( ) 

and scale (s) parameters. Other wavelet functions can be 

derived using the mother wavelet. Scale and translation 

correspond to frequency band and time information 

respectively in the transform domain. The DWT is 

derived from the discretization of  sW ,
 given by 
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Vector A and D are obtained by passing the signal x 

through low and high pass filters. approximate and 

detailed coefficients are obtained by downsampling these 

vectors. By repeating the process of decomposition using 

the approximate coefficients, different levels of DWT 

coefficients can be obtained. 

Researchers have used different mother wavelet 

functions and levels of decomposition in bearing and gear 

fault diagnosis. In this study, db5 is used as a mother 

wavelet function and 3rd level decomposition for gear 

fault diagnosis. 

 

2. 2. Empirical Mode Decomposion (EMD)         EMD 

is an effective adaptive signal processing technique. 

Finite numbers of intrinsic mode functions (IMF) can be 

obtained by decomposing complicated data [24, 25]. A 

number of extrema and zero crossings are same for linear 

or non-linear mode. The procedure for obtaining these 

IMF’s from a given signal is as follows. 

Firstly, all the local extrema are determined, and a 

cubic spline curve is employed to connect all the local 

maxima to obtain the upper envelop and all local minima 

to obtain the lower envelop. The entire signal should be 

enclosed by these upper and lower envelops. A mean of 

upper and lower envelop is m1 and the difference between 

the x(t) and m1 gives the first component h1 

  11 hmtx   (4) 

If h1 is an IMF, then h1 is the first component of x(t). If h1 

is not an IMF, the above procedure is repeated 

considering h1 as original signal 

11111 hmh   (5) 

After sifting for k  times, h1k becomes an IMF, that is  

  11111 chmh kkk   (6) 

c1 is the first IMF component obtained from the original. 

Separating c1 from x(t), We get 

  11 ctxr   (7) 

Now, r1 is considered as the original signal and the 

process described above is repeated n time to obtain n-

IMFs of signal x(t). 

   


n

j
nj rctx

1

 (8) 

The above procedure is repeated till rn becomes a 

monotonic function from which no more IMFs can be 

drawn out. 

Thus, decomposition of the signal results into n-

empirical modes and a residue rn. Where rn is the mean 

trend of x(t). The IMFs contain different frequency bands 

and the components of frequency included in each 

frequency band are different, and they change with the 

variation of signal x(t), rn represents the central tendency 

of signal x(t). 
 

2. 3. Machine Learning Techniques             In the 

present work Support Vector Machine, Multi-Layer 

Perceptron and Random Forest, widely used and popular 

ML techniques are utilized for the gear fault 

classification. 
 

2. 3. 1. Support Vector Machine (SVM)        SVM is 

a supervised ML technique employed for the 

classification and regression in the small sample dataset. 

In SVM classifier, data is separated by a decision 

boundary known as the hyperplane such that the margin 

of separation between two classes is maximized and 

points that decide the margin are called as support vectors 

as shown in Figure 2. 
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Figure 2. Hyperplane classifying two classes 

 

 

This is done by minimizing the quadratic function under 

linear inequality constraints. Consider a training sample 

set {(xi, yi) }; i=1 to N, where N is the total number of 

samples. It is to determine the separation plane with the 

smallest generalization error. The labels associated with 

the two classes, i.e. triangle and circle class are 1iy  

and 1iy  respectively. Slack variables are considered 

ξi ≥ 0 for non-separable data. The hyperplane f(x) = 0 that 

separates the given data can be obtained as a solution to 

the following optimization problem [4]. 

Minimize 
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where, C is a constant representing error penalty 

 

2. 3. 2. Multi-Layer Perceptron (MLP)         MLP is a 

type of Back Propagation Artificial Neural Network 

which includes an input layer, output layer and two or 

more weighted perceptron (hidden layers) [8]. The 

targets of each layer are characterized by a function, and 

subsequently, the targets of preceding layers are served 

as inputs to the succeeding layer. Each layer consists of a 

specific number of neurons which carry information to 

neurons of subsequent layers. 

For example, consider a training set  
(𝑋𝑖

𝑗 , 𝑌𝑖
𝑗) with N features and M samples where i=1, 2, 

3,…M and j= 1, 2, 3,…N. The first layer will consist of N 

neurons with each jth neuron containing M samples of jth 

feature. Neurons in subsequent layers are also fixed  

accordingly (with an additional node neuron), but the last 

layer will have only one neuron for regression model and 

for the classification problem number of neurons will be 

equal to a number of classes. The parameter which 

controls the mapping of information from one layer to 

another, say Øj is multiplied with training samples 
j

iX
 

and the resultant matrix multiplication is fed as  a 

parameter to the function. For example, a neuron a1 of the 

second layer is represented as : 

 1
11 , j
T Xfa   (10) 

where, f  is the sigmoid function. 

Hence, the prediction is given by aL. To minimize the loss 

function, this is followed by back-propagation method 

wherein another parameter say ∂ is computed for each 

layer with the help of gradient descent. The values of ∂ 

are computed from the last layer to the first layer and are 

updated by means of gradient descent. Also, for the last 

layer: 

 yaLL   (11) 

where, y is the target. 

The following layers are given by: 

      1111 1***   LLL
T

LL aa  (12) 

where,     11 1*   LL aa  is the differentiated term of the 

sigmoid function. Hereafter, the product of two ∂ and a 

are computed to add over each iteration to get the 

gradient which will minimize the loss function. This 

process is done with regularization. 

Hence the ‘accumulator’ i.e. 
  
dy

yaLd L ,
 (i.e. the 

derivative of loss function) is given by: 

  )(
*

1 L
ij

L
ijij

M
D 





  (13) 

where, α is the regularization parameter and M is the 

number of samples. 

Also, initially 
 

0
L
ij and it is updated as follows: 

     TLL
LL a*1  (14) 

The accumulator i.e. D is added over each step to 

minimize the loss function and get better value of 

prediction i.e. aL. 

 

2. 3. 3. Random Forest (RF)            is a polpular 

ensemble machine learning technique, in which many 

decision trees are built on bootstrapped sample same as 

bagging from training dataset and to get the output 

prediction, prediction from each tree is averaged in case 

of regression and majority voting in case of 

classification. RF is better than a single decision tree and 

reduces the over-fitting by averaging. High variance and 

low bias of decision trees make it unstable. RF consists 

of bootstrap aggregating (bagging) with a randomized  

selection of features at each split. A bootstrap 

aggregating algorithm improves the stability and 

accuracy of an individual predictive model [18,19]. 

Consider A, number of trees generated by the random 

forest. Using bootstrap sampling, select the subset from 
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the training dataset. For each subset grow tree {t1(x), 

t2(x),…..,tA(x)} where x ϵ {𝑥1, 𝑥2, . . . , 𝑥n}. x is an n-

dimensional feature vector, and this feature vector is 

prepared by randomly selecting n features from a total of 

N features. Using the Gini impurity (Ig) pick a node e out 

of those n variables for the best split point. 

  


b

a
apG RI

1

21 (15) 

where, a is the number of classes (a=1, 2, 3, …., b) and 

Ra is the fraction of instances tagged with class a. Then 

split the node into two daughter nodes and repeat the 

above procedure for growing A number of trees. Y1, 

Y2,….Yk is the output of these trees, where 𝑘 ϵ{1, 2, . . . 

, A} is the prediction for a classified object by the 𝑘th tree, 

and a collection of all individuals make a final 

classification decision. 

 

 

3. SIMULATION DRIVEN APPROACH 
 
In the present work, a model developed by Bartelmus  

[20] is used to obtain the vibration response. The model 

includes both torsional and lateral motions. In this 

gearbox, the casing is assumed as rigid so as vibration 

propagates linearly along the casing. Figure 3 depicts the 

model used in this work. 

In this model the system is rotated by a motor and a 

load torque is applied at the output. M1 and M2 are the 

motor and load torque, respectively. Flexible couplings 

are used to connect the motor shaft and input shaft on 

which pinion is mounted, and load shaft and shaft on 

which gear is mounted. Shafts containing pinion and gear 

are mounted on bearings, and these bearings are mounted 

on the rigid casing. A model consists of two parameters 

stiffness and damping and includes both linear and 

rotational (lateral and torsional) equations of motion. 

Equations  (16)-(23)  represent  the  equations  of  motion 

 

 

 
Figure 3. Single-stage spur gearbox model [20] 

for the system shown in Figure 3. x - direction vibration 

response is a free response (Equations (16) and (17)). 

When the system is stable response in this direction will 

disappear; therefore, vibration in y - direction is 

considered here to get the response of healthy and faulty 

gears. Single fault on a single pinion tooth is considered 

for obtaining vibration response for faulty gear condition. 

Vibration response of faulty gears includes responses of 

gearbox having faults such as spalled, cracked and 

chipped gear tooth. Firstly, TVMS of normal and faulty 

conditions is calculated using the potential energy 

method presented in [26-28]. The value of calculated 

TVMS which act as an internal excitation, is considered 

while obtaining the vibration response. 

111111 xcxkxm xx    (16) 

222222 xcxkxm xx    (17) 

ck FFykycym  111111   (18) 

ck FFykycym  222222   (19) 

     ckbmpmp FFRckI  11111    (20) 

     bgbgckb ckFFRI    22222  
(21) 

   111    mpmpmm ckMI
 

(22) 

   bgbgbb ckMI    222
 

(23) 

 212211 yyRRkF bbtk  
 

(24) 

 212211 yyRRcF bbtc   
 

(25) 

The gear parameters utilized in this model to obtain 

the simulated vibration data are given in Table 1. Figure 

4 (a-b) shows the sample of TVMS obtained for normal 

and faulty gear conditions respectively for one rotation of 

pinion. The equations of motion (Equations (18)-(23) ) 

are solved simultaneously using ODE15s solver function 

in Matlab to obtain the vibration response. The vibration 

response is obtained for different load and speed 

conditions. Figure 5 (a-b) shows the vibration response 

obtained at 1800rpm for normal and faulty gear 

condition, respectively for 0.1 s. 

To increase the exactness of simulated vibration 

signals with the actual field data noise is added to the 

simulated response. A pink noise (1/f power spectrum) is 

added, as pink noise is present everywhere in nature, 

electronics, machinery, and numerous other fields [29]. 

Chen et al. [30] used this pink noise power spectrum to 

generate the bearing signals. Randomly this noise is 
 



218                          V. C. Handikherkar and V. M. Phalle / IJE TRANSACTIONS A: Basics  Vol. 34, No. 01, (January 2021)   212-223 

 

TABLE 1. Gear parameters for simulated data 

Gear Parameter  Value  

Number of teeth on Pinion/Gear  Np = 19, Ng = 48 

Pressure angle  200
 

Diametral Pitch  P = 0.2032 m -1
 

Width of Teeth  L = 0.16 m  

Contact ratio  Cr = 1.6456 

Young’s Modulus  E = 2.068 x 1011 Pa 

Poisson’s Ratio  υ = 0.3 

Mass of the Pinion/Gear m p = 0.96 kg, m g = 2.88 kg 

Mass moment of inertia of the 
Pinion/Gear 

Ip = 4.3659 x 10 -4 kgm 2 

Ig = 8.3602 x 10 -4 kgm 2
 

Mass moment of inertia of the 

motor/Load  

Im = 0.0021 kgm 2
 

Ib = 0.0105 kgm 2
 

Tortional stiffness of the coupling  kp =kg=  4.4 x 10
4
 Nm/rad 

Damping coefficient of the 

coupling  
cp =cg= 5.0 x 105 Nm/rad 

Radial stiffness of the bearing  k1 =k2= 6.56 x 107 N/m  

Damping coefficient of the 

bearing  
c1 =c2= 1.8 x 10

5
 Ns/m  

Base circle radius of Pinion/Gear 
Rb1= 0.02834 m, 

Rb2= 0.0716 m  

 

 

 
(a) Gear with no fault 

 
(b) Gear with fault 

Figure 4. Time Varying Mesh Stiffness (TVMS) 

 

 

added to simulated vibration signals so that S/N ratio can 

range from 1 to 30. 

 

 

4. EXPERIMENTAL TEST RIG 
 

To validate the simulation-driven approach ML 

algorithms trained using the simulated training data is to 

be  tested  using  the  experimental  data.  For the broader 

 
(a) Gear with no fault 

 
(b) Gear with fault 

Figure 5. Simulated Vibration Response at 1800rpm 

 

 

applicability of this approach in gear fault detection, 

gearbox test rig having different gear geometric 

parameters than the one used to obtain the simulated data 

is to be employed for generating the testing/validation 

data. Figure 6 shows the gearbox experimental setup used 

to collect the validation data. Validation data for normal 

and faulty conditions are collected at different load and 

speed conditions. The gear test rig has spur gear having 

full depth involute profile and has 25 and 61 number of 

teeth on pinion and gear respectively and 200 pressure 

angle, 4 mm module, 20 mm width. An electric motor 

drives the pinion, and a load is applied at the driven end 

using the magnetic brake. Tri-axial accelerometer 

mounted on the gearbox is connected to the OROS data 

acquisition system to collect the vibration data. 

Validation or testing data contains an equal number of 

samples of normal and faulty gear condition. 

 
 
5. FEATURE ETRACTION AND SELECTION  

 

Numerous features have been proposed in the literature 

for gear fault  diagnosis  using  time  domain,  frequency 

 
 

 
Figure 6. Gearbox experimental test rig 

Two teeth pairs in 
contact 

Single tooth pair in contact 

Single tooth pair in contact 

Two teeth pairs in contact 
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domain, wavelet decomposition and Empirical Mode 

Decomposition etc. In the present work, wavelet 

decomposition and EMD are used to process vibration 

signals. A signal is decomposed in 3 levels using the db5 

mother wavelet function, and also the signal is processed 

using EMD to obtain the IMFs. Statistical features 

Skewness, Kurtosis, Root Mean Square (RMS) Crest 

Factor, Shape Factor, Impulse Factor and Clearance 

Factor are extracted from all three decomposition levels 

of wavelet and IMF’s of EMD. Equations (26)-(32) 

presents the mathematical expression for calculating 

these features. 

In literature different methods of feature reduction are 

available such as Principal Component Analysis (PCA), 

Factor Analysis (FA), Independent component analysis 

(ICA), High correlation between two columns. These 

methods were utilized for feature reduction but 

application of first three methods i.e. PCA, FA and ICA 

didn’t yield satisfactory results. As PCA is a widely used 

feature reduction technique, results obtained using this is 

presented here. 

 
5. 1. Principal Component Aanalysis (PCA)         PCA  
is a feature dimensionality reduction technique which is 

used for the compression and classification of the data. 

The dimensionality of data set is reduced by finding the 

new variables that are smaller than the original data set 

and retain most of the information. These new variables 

are called as the principal components which are 

uncorrelated. 

In this paper for feature reduction high correlation 

between two columns method is adopted. In which 

correlation between the extracted features is determined. 

Features having high correlation coefficient are linearly  

dependent and have the same effect as the dependent 

variable. Therefore, one of the two features having high 

correlation coefficients is removed. The remaining  

features are then fed one by one to ML algorithms and a 

trial and error approach is adopted to select the features 

giving best results. Table 2 presents a list of selected 

features. The extracted features from both simulated and 

experimental data are normalized to the zero mean and to 

a range of ±1 to prepare training and testing data set. 

𝑺𝒌𝒆𝒘𝒏𝒆𝒔𝒔(𝑺𝑲𝒂) = 
∑ (𝒂(𝒏)−𝝁𝒂)𝟑𝑵

𝒏=𝟏

(𝑵−𝟏)𝝈𝒂
𝟑   (26) 

𝑲𝒖𝒓𝒕𝒐𝒔𝒊𝒔(𝑲𝒂) =  
∑ (𝒂(𝒏)−𝝁𝒂)𝟒𝑵

𝒏=𝟏

(𝑵−𝟏)𝝈𝒂
𝟒   (27) 

 𝑹𝒐𝒐𝒕 𝑴𝒆𝒂𝒏 𝑺𝒒𝒖𝒂𝒓𝒆(𝒂𝒓𝒎𝒔) = √∑ (𝒂(𝒏))
𝟐𝑵

𝒏=𝟏

𝑵−𝟏
 (28) 

𝑪𝒓𝒆𝒔𝒕 𝑭𝒂𝒄𝒕𝒐𝒓 =
𝒂𝒑

𝒂𝒓𝒎𝒔
  (29) 

𝑺𝒉𝒂𝒑𝒆 𝑭𝒂𝒄𝒕𝒐𝒓 (𝑺𝑭𝒂) =  
𝒂𝒓𝒎𝒔

𝟏

𝑵
∑ |𝒂(𝒏)|𝑵

𝒏=𝟏

  (30) 

TABLE 2. Selected Extracted Features 

Feature Extraction 
Method 

Features 

Wavelet Transform 

1
st
 level Detailed Coefficients - Crest Factor 

3
rd

 Level Detailed Coefficients – Skewness 

3
rd

 Level Approximation Coefficients - 
Crest Factor 

Empirical Mode 

Decomposition 

IMF2 – RMS 

IMF4 – RMS, Shape Factor, Kurtosis 

IMF6 – Clearance Factor, Impulse Factor, 

Kurtosis 

IMF7 – Kurtosis 

IMF8 – Shape Factor 

 

 

𝑰𝒎𝒑𝒖𝒍𝒔𝒆  𝑭𝒂𝒄𝒕𝒐𝒓(𝑰𝑭𝒂) =  
𝒂𝒑

𝟏

𝑵
∑ |𝒂(𝒏)|𝑵

𝒏=𝟏

  (31) 

𝑪𝒍𝒆𝒂𝒓𝒂𝒏𝒄𝒆 𝑭𝒂𝒄𝒕𝒐𝒓(𝑪𝑳𝑭𝒂) = 
𝒂𝒑

(
𝟏

𝑵
∑ √|𝒂(𝒏)| )  𝑵

𝒏=𝟏

𝟐  (32) 

 
 
6. RESULTS AND DISCUSSION 
 
A simulated vibration data is obtained for different load 

and speed conditions, as described in section 3. While 

getting the vibration data single fault is considered on a 

single pinion tooth. Figure 4(a-b) shows the TVMS for 

the healthy and faulty gear, respectively, for the one 

pinion revolution. The contact ratio of gear is around 1.6, 

i.e. for 60% of duration two pairs of teeth are in contact 

and hence the increase in TVMS in this region. Figure 

4(a) shows the TVMS for the healthy gear, which shows 

a similar pattern for all the tooth engagements. However, 

for the faulty case (Figure 4(b)), when faulty tooth 

engages decrease in the TVMS is observed for the 

duration of engagement of faulty tooth. The faulty tooth 

contact region is highlighted in Figure 4(b). This change 

in the TVMS affects the vibration response of the gear. 

This variation in vibration response of normal and faulty 

gear is clearly shown in Figure 5(a-b), respectively. In 

Figure 5(b) the part of the vibration response whenever 

faulty tooth engages is highlighted. As the fault is 

considered on the pinion, for every pinion rotation this 

faulty tooth will come in contact and hence the change in 

vibration response. T in Figure 5(b) represents the time 

period for one pinion rotation. To improve the exactness 

of the simulated data towards the actual data noise is 

added. These signals are then processed using the DWT 

and EMD, and total 84 statistical features are extracted 

from all levels of decomposition of DWT and IMF’s of 

EMD. To reduce the dimensionality of the dataset 
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Principal Component Analysis (PCA) was employed, 

and ML algorithms were tested for a different number of 

principal components, and its classification accuracies 

were obtained. Figure 7 shows the testing accuracy 

obtained for all three ML techniques for a different 

number of principal components. This figure indicates 

that accuracy obtained using PCA for a different number 

of components was between 65 and 78% for all three 

classifiers. These accuracy values obtained using PCA 

were not satisfactory. Therefore, to reduce the 

dimensionality of the dataset, a different method is 

utilized. In this, a correlation among the extracted 

features is determined. One of the two features having 

high correlation coefficients is removed as features 

having high correlation coefficient are linearly dependent 

and have the same effect as the dependent variable. 

Remaining features are then fed one by one to train the 

ML algorithm and features giving best results are 

selected. Table 2 presents a list of selected features. 

The ML algorithms are trained using these selected 

features, and ten cross-validation accuracy is obtained. 

The ML algorithm’s parameter tuning is done based on 

simulated data and a grid search algorithm. For the wider 

applicability of the simulation-driven approach, ML 

algorithms trained using simulated data is validated by 

experimental data generated using the gearbox test rig 

having different gear geometric parameters than the one 

used to create the simulated data. The classifier accuracy 

is a metric utilized in this study for the evaluation of the 

classification algorithm. Figure 8 shows training and 

testing accuracies obtained for SVM, MLP and RF 

machine learning algorithms. 

Training accuracy of more than 90% and tes ting 

accuracy of more than 87% is obtained for all the three 

classifiers. The highest training and testing accuracy of 

95 and 90% is obtained using the RF classifier. The 

values of accuracies for all three classifiers imply the 

applicability of the simulation-driven approach for gear 

fault detection. The performance of the proposed 

simulation-driven approach is compared with the existing 

data-driven approach. ML algorithms are trained and 

tested using experimental data in the data-driven 

 

 

 
Figure 7. Testing Accuracy of ML algorithms for different 

principal components 

 
Figure 8. Accuracies by using Simulation Driven Approach 

 

 

approach. Figure 9 shows the accuracies obtained using 

the data-driven approach. The accuracies obtained for all 

the three classifiers using data-driven and simulation-

driven approach are comparable, and there is very little  

difference in their accuracies. Therefore, the simulation-

driven approach can be applied for the gear fault 

classification when actual historical data is not available. 

Classifier accuracy is considered as a metric for the 

evaluation of the ML algorithm. However, for the 

complete performance evaluation of the classification 

algorithm precision and recall are also evaluated. 

Precision is the ratio of correctly classified positive cases 

to the total number of positively classified cases and 

recall is the ratio of correctly classified positive cases and 

the total number of actual positive cases. Figure 10 shows 

the values of precision and recall for each classifier. For 

all the three classifiers precision and recall values are 

more than 87%. The higher values of precision mean the 

less number of instances are classified as faulty when it 

is normal, that is fewer chances of false alarms for the 

maintenance and avoid undue maintenance task. The 

higher value of recall increases the chances of positive 

alarms as lesser instances are classified as normal when 

it is faulty, to carry out the maintenance task when it is 

actually required. All the three classifiers show the 

considerable values of precision and recall (Figure 10), 

which increases the confidence in the simulation-driven  

approach presented in this paper for gear fault detection. 

Precision and recall values for the RF classifier are 

slightly higher than the other classifiers. 

Another metric used for the evaluation of the binary 

classification is the Area under the receiver operating 

characteristic curve (AUC). The curve of true positive 

rate Vs false positive rate at different classification 

threshold values is  known as the Receiver Operating 

Characteristic curve abbreviated as ROC. Figure 11 

depicts the ROC curve for the three classifiers. The AUC 

values are 0.97, 0.92 and 0.98 for SVM, MLP and RF, 

respectively. A higher value of AUC means that classifier 

is confident that randomly selected positive instance is 

positive than the randomly selected negative instances as 

positive. The ROC curve (Figure 11) and the AUC values 

obtained for three classifiers shows the agreement with 
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Figure 9. Accuracies by using Data Driven Approach 

 

 

 
Figure 10. Precision and Recall for SVM, MLP and RF 

 

 

 
Figure 11. ROC curve for SVM, MLP and RF classifiers 

 
 

the applicability of the simulation-driven approach for 

the gear fault classification. 
 
 

7. CONCLUSION 
 

Condition monitoring and fault diagnosis of the gearbox 

using the machine learning techniques utilize the data-

driven approach, but the requirement of in-

service/experimental data for the training of ML 

algorithm has prevented its widespread application in the 

industry. Also, for the better training of ML algorithm 

high diverse data is required. The present paper 

implements a simulation-driven approach for the spur 

gear fault detection and validates this approach using the 

experimental data. Simulated vibration response is 

generated using a gearbox dynamic model to produce the 

extensive variety of data of at different operating and 

fault condition. Firstly, TVMS is calculated for normal 

and faulty gear condition. TVMS is reduced when faulty 

gear tooth engages, and this results in the change in 

vibration response. ODE15s solver function in Matlab is 

employed to solve the equations of motion to obtain the 

simulated vibration response. This simulated vibration 

data is not having any noise, but in actual practical 

application the signal is masked with environmental 

noise. Therefore, a pink noise is added to improve the 

exactness of the simulated vibration signals to the actual 

vibration signals. Pink noise is added because it is present 

everywhere in nature, electronics, machinery, and 

numerous other fields. These signals are then processed 

using the EMD and DWT signal processing techniques. 

Features are extracted from simulated data and fed for the 

training of ML algorithm. For the wider applicability of 

the simulation-driven approach, ML algorithm trained 

using the simulated data is validated by using 

experimental data collected from a test rig having 

different gear parameters. The results show that the 

simulation-driven approach gives the considerable 

training and testing accuracy for all the three classifiers. 

This approach is then compared with the existing data 

driven approach and the results obtained are comparable. 

However, the performance of the this approach can be 

improved by considering the dynamic model with high 

degrees of freedom and considering more effect such as 

friction, gyroscopic effect etc. In the present era of 

Industry 4.0 the proposed method has the potential to 

improve the machine learning based condition 

monitoring of the gearbox using simulated data. 

However, the simulated data cannot replace the 

experimental data, but it can serve as a starting point for 

the gear fault diagnosis when no historical data is 

available. The implementation of this approach will help 

in monitoring the condition of the gearbox from the day 

of installation. 
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Persian Abstract 

 چکیده
است. استفاده از تکنیک های  Industry-4.0و تشخیص عیب تجهیزات صنعتی سناریوی فعلی برای نگهداری در دوره  ML)نظارت بر شرایط مبتنی بر یادگیری ماشین )

ML آن متکی  ات برای آموزشبرای تشخیص خودکار عیب ، خرابی غیرمنتظره سیستم را به حداقل می رساند. با این حال ، این تکنیک ها به شدت به داده های تاریخی تجهیز

رای هر ماشین صنعتی در دسترس نیست و تولید داده ها به صورت آزمایشی برای هر هستند که کاربرد گسترده آن را در صنعت محدود می کند. از آنجا که داده های تاریخی ب

با استفاده از داده های ارتعاش  ML شرایط خطا قابل استفاده نیست. بنابراین ، این چالش برای استفاده از چرخ دنده با نقص دندان حل می شود. در این مقاله ، الگوریتم های

 زش داده شده و با داده های تجربی آزمایش می شوند. داده های شبیه سازی شده برای گیربکس با شرایط کارکرد و خطای مختلف تولید می شود.شبیه سازی شده گیربکس آمو

بیه سازی داده های ش تی بهاز یک مدل دینامیکی گیربکس برای تولید داده های ارتعاش شبیه سازی شده برای شرایط دنده نرمال و معیوب استفاده شده است. یک نویز صور

ته و تغییر شکل موجک گسس شده اضافه می شود تا دقت داده های درست را بهبود بخشد. علاوه بر این ، این داده های شبیه سازی شده با استفاده از تجزیه حالت تجربی

کاملاً ثابت مانند ماشین بردار پشتیبان ، جنگل تصادفی و پرسپترون  MLپردازش می شوند و ویژگی ها استخراج می شوند. این ویژگی ها سپس به آموزش تکنیک های مختلف 

دقت با هر سه الگوریتم را  ٪87آموزش دیده با استفاده از داده های تجربی آزمایش می شوند. نتایج بیش از  MLچندلایه منتقل می شود. برای تأیید این روش ، الگوریتم های 

ارزیابی می شود. این معیارها نتایج مثبتی را برای کاربرد این روش در تشخیص عیب  ROCبا استفاده از منحنی دقت ، فراخوان و نشان می دهد. عملکرد مدل آموزش دیده 

 .دنده نشان می دهد

 
 


