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A B S T R A C T  
 

 

 
In some countries, regional authorities may attempt to rebalance the allocation of national facilities in 

benefit of their own region which, in turn, may cause disturbances in the central government’s decision-
making proces. Regarding the hierarchical nature of these types of decisions, classical optimization 

models are not effective in decision-making and the use of multi-level programming can increase the 

efficiency of planning. Our paper aims to address the issue of a bi-level programming model to conduct 
the location analysis of emergency warehouses. A three-echelon relief supply chain is considered in 

which the relief network involves national and regional warehouses and demand cities. The upper-level 

model decides on the location of national warehouses, allocating them to regional warehouses. The 
lower-level model determines the location of regional warehouses and allocates them to demand points. 

The structure of both levels is based on the median location-allocation problem. Three solution 

approaches are presented based on the full enumeration and two types of nested evolutionary methods 
(genetic and heuristic local search algorithms). For the model to be used in Iran, the efficiency of 

algorithms is analyzed for two sizes of problems. The obtained results show the proper functioning of 

the solution approaches.    

doi: 10.5829/ije.2021.34.01a.15 

 
1. INTRODUCTION1 

 

Although many advances in science and technology have 

contributed to the increased immunity of human beings 

against natural disasters, numerous crises have caused 

various socioeconomic damages annually. As evidenced 

in 2015, natural disasters affected more than 90 million 

people with 23000 people losing their lives in 113 

countries. Added to this, the damage caused by these 

disasters is estimated to be $ 66.5 billion [1]. Owing to 

both human and financial losses, interests and efforts are 

devoted to the development of disaster management 

strategies. It consists of four sequential stages: 

mitigation, preparedness, response, and recovery. At the 

preparedness stage, the aim is to decrease the operation 

time in the response phase [2]. Pre-positioning of 

emergency warehouses is one of the main tasks 

concerning the preparedness stage. Positioning relief 

supplies near the expected location of disaster is called 
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pre-positioning [3]. These relief supplies include food, 

potable water, medicine, vaccines, medical equipment, 

tents and generators [4]. Pre-positioning is one of the 

appropriate strategies employed to reduce human 

casualties and damages to the logistics infrastructure. 

This strategy may develop several benefits, including an 

improved response time and better purchase price of 

supplies for relief organizations [5].  

Management of the emergency warehouses network 

is considered the responsibility of the central government 

in most countries, and the design of this network is 

usually centralized at the upper-level of governance.  

Facility positioning is one of the key issues in designing 

a network of emergency warehouses for pre-positioning 

relief items. In some countries, the central government’s 

decisions on the positioning of national resources have 

been ignored by regional decision-makers. Accordingly, 

provincial managers and parliamentarians use national 

facilities for their representative area regardless of 
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planning prospects, influencing the central government’s 

optimal decisions. Clearly, in field studies of facility 

positioning for managing logistics at times of disaster, 

the modeling approach of most previous studies was 

based on classical optimization techniques. The use of 

single-level programming to model the problem of 

positioning emergency warehouses in these countries is 

not highly efficient. Therefore, to encourage the greater 

participation of lower-level decision-makers in the 

planning process, the bi-level programming approach can 

be used to model the problem of pre-positioning 

emergency warehouses. In this paper, a bi-level 

optimization model is designed to apply location-

allocation to national and regional warehouses. Owing to 

the bi-level optimization model complexity, in this paper, 

three innovative solution approaches are presented by 

full enumeration and the nested evolutionary sequential 

approach. The  main contributions of this research can be 

summarized as follows: 

 Introduction of a bi-level programming structure for 

the use of national and regional decision-makers in the 

field of emergency warehouse positioning  

 Development of a bi-level model to locate and allocate 

national and regional warehouses for relief supply pre-

positioning  

 Design of nested evolutionary approaches and an exact 

method based on full enumeration to solve binary bi-

level location-allocation models  

 Comparison of nested genetic and heuristic algorithms 

with different allocation modes to solve a model with 

a large number of variables 

The remaining of this article is organized as follows.  

Section 2 and 3 are dedicated to review of the literature 

on pre-positioning problems and the application of 

single-level and bi-level programming in disaster 

logistics. Section 4 presents the bi-level model for 

location-allocation. Section 5 is related to the approaches 

to solve the model. Section 6 is devoted to the results of 

solving the optimization model. The final section 

presents conclusions and suggestions. 
 

 

2. LITERATURE REVIEW  
 
2. 1. Single-level Emergency Warehouses Location            
Many review articles are found on the application of 

optimization in disaster management, of which [6-8] 

have especially addressed the pre-positioning problem. 

Balcik, Bozkir and Kundakcioglu [9] reviewed and 

categorized the pre-positioning based on problem 

characteristics and the structure of optimization models. 

Rawls and Turnquist [10] modeled the pre-positioning 

problem to determine the location of the distribution 

center, level of relief items and assignment of distribution 

centers to demand points, using the stochastic mix-

integer model and the Lagrangian L-shaped method 

(LLSM). In their next study, they developed the previous 

model considering the service quality constraint [11]. 

Bozorgi-Amiri, Jabalameli, Alinaghian and Heydari [12] 

presented a multi-objective optimization model for the 

pre-positioning problem. They used a robust 

optimization approach to model uncertainty. Verma and 

Gaukler [4] designed two models for facility positioning 

in the United States’ Strategic National Stockpile, one 

being deterministic and the other stochastic. The amount 

of damage inflicted upon response facilities and 

population centers was considered a probabilistic 

function of distance-damage. The results indicated that 

the costs of facility locationing in the stochastic model 

were less than those in the deterministic model. Rezaei-

Malek, Tavakkoli-Moghaddam, Zahiri and Bozorgi-

Amiri [13] developed a stochastic model to analyze the 

location of warehouses and design a distribution plan. 

The objective functions were considered to be the 

response time post-disaster and operation costs at the pre-

disaster phase. Mohammadi, Ghomi and Jolai [14] 

presented a stochastic multi-objective model for the relief 

supply pre-positioning problem in which the demand 

covering and total cost and satisfaction ratio were 

considered objectives. Javadian, Modares and Bozorgi-

Amiri [15] formulated the relief supply chain to locate 

local distribution centers and central warehouses. They 

proposed two multi-objective evolutionary algorithms 

and compared them with e-constraint method based real 

data in Iran case study. Aslan and Çelik [16] proposed 

two-stage stochastic programming in which the first 

stage includes the emergency warehouse location and 

relief supply transportation planning in the second stage. 

Their optimization model’s innovation was taking into 

account the probabilistic cost of repairing damaged 

roads. 
 

2. 2. Bi-level Location in Disaster Logistic        
Decentralized decision-making problems are typically 

modeled under the Stackelberg game [17]. These 

problems can be modeled in the form of bi-level 

programming. In other words, an optimization problem 

as the leader (upper-level) is limited by another 

optimization problem as the follower (lower-level) [18]. 

In bi-level programming, the leader sets his/her decision 

first, and then the follower decides to optimize his/her 

goals while being aware of the decision taken by the 

follower. Not until does it reach the equilibrium point, 

this process continues [19]. The general form of the bi-

level programming model is formulated as follows: 

 
,

min ,
x X y Y

F x y
 

 

.s t   

𝑦 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛{𝑓(𝑥, 𝑦): 𝑔(𝑥, 𝑦) ≤ 0, 𝑦 ≥ 0}  

𝑦 ∈ 𝑌  

𝐺(𝑥, 𝑦) ≤ 0 

𝑥 ≥ 0  

(1) 
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where 𝐺(𝑥, 𝑦) and 𝑔(𝑥, 𝑦)  denote the upper and lower 

level constraints, respectively.  

The application of bi-level location in disaster 

logistics is concerned with evacuation, relief distribution, 

facility location, and pre-positioning. Each of these 

problems can be divided into two phases (pre and post-

disaster). As Table 1 shows, most studies have focused 

on evacuation, and fewer researches have investigated 

the effect of pre-positioning emergency warehouses. 

Kongsomsaksakul, Yang and Chen [20] provided a bi-

level optimization model for an evacuation plan, based 

on a problem presented by the Stackelberg game. 

Planning authority and evacuees were considered to be 

the leader and the follower, respectively. The leader 

determined the number and locations of shelters, and the 

follower selected the target shelter and route. Hua-li, 

Xun-qing and Yao-feng [21] developed a location-

routing problem in the urban emergency system as bi-

level programming in which the objective of the upper-

level was to maximize the total time satisfaction served 

and the lower-level was to minimize the total cost. Li, 

Nozick, Xu and Davidson [22] in their study developed a 

scenario-based bi-level model for evacuation planning. 

The facility planner and network user were considered as 

upper and lower decision-makers, respectively. The 

upper-level was a two-stage stochastic programming 

model for location and allocation. The lower-level model 

was concerned with the network decision-maker 

regarding route selection. Camacho-Vallejo, González-

Rodríguez, Almaguer and González-Ramírez [23] 

proposed a bi-level programming model to optimize the 

location of distribution centers in humanitarian logistics. 

The government of the affected country and non-profit 

international organizations were considered to be the 

upper-level and the lower-level, respectively. The 

objective functions of the upper and lower level model 

were known to be the minimization response time and the 

minimization cost of sending relief items to the storage 

center. Gutjahr and Dzubur [24] developed a multi-  

 

 

TABLE 1. A review of recent researches on bi-level location in disaster logistic 

Author’s Problem Disaster 

Upper-level Lower-level 

Solving Uncerainty 
Decision 

Objective 

function 
Decision 

Objective 

function 

Kongsomsaksakul, 

Yang and Chen [20] 
Evacuation General 

Shelter 

location 

Evacuation 

time(↓) 

Route 

choice 

Travel 

Time(↓) 

Nested 

evolutionary 
- 

Ng, Park and Waller 

[27] 
Evacuation Manmade 

Shelter 

location 

Evacuation 

time(↓) 

Route 

choice 

Travel 

Time(↓) 

Nested 

evolutionary 
- 

Apivatanagul, 

Davidson and 
Nozick [28] 

Evacuation Hurricane 
location- 

Allocation 

Risk, travel 

time(↓) 

Route 

choice 

Travel 

Time(↓) 

Heuristic 

algorithm 
+ 

Li, Nozick, Xu and 

Davidson [22] 
Evacuation Hurricane 

location- 

Allocation 
Cost(↓) 

Route 

choice 

Travel 

Time(↓) 

Heuristic 

algorithm 
+ 

Hua-li, Xun-qing 
and Yao-feng [21] 

Facility 
location 

General Location Cost(↓) 
Route 
choice 

Time 

satisfaction(↑) 

Genetic 
algorithm 

- 

Camacho-Vallejo, 
González-

Rodríguez, 

Almaguer and 
González-Ramírez 

[23] 

Distribution Earthquake Allocation 
Response 

time(↓) 
Allocation 

Shipping 

cost(↓) 

Heuristic 

algorithm 
- 

Gutjahr and Dzubur 
[24] 

Distribution General Location 
Costs(↓), 

Uncovered 

demand(↓) 

Allocation 
Wardrop 

equilibrium(↓) 
Exact method - 

Xu, Wang, Zhang 

and Tu [25] 
Distribution Earthquake Location 

Weighted 

distance(↓) 

Route 

choice 

Transportation 

times(↓) 

Genetic 

algorithm 
+ 

Chen, Tadikamalla, 
Shang and Song 

[29] 

Pre-
positioning 

Earthquake 
location-

Allocation 

Response 

time(↓) 
Allocation 

Allocation 

fairness(↓) 

Nested 
differential 

evolution 

- 

Safaei, Farsad and 

Paydar [26] 

Pre-

positioning 
Flood 

Location- 

Allocation 
Cost(↓) Allocation Supply risk(↓) Exact method + 

Haeri, Motlagh, 

Samani and Rezaei 

[30] 

Pre-

positioning 
Earthquake 

Location- 

Inventory 

Unsatisfied 

demand(↓) 

Cost(↓) 

Allocation 
Transportation 

costs(↓) 

Fuzzy goal 

programming 
+ 
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objective bi-level optimization model to locate 

distribution centers in a relief supply chain. The aid-

providing organization was regarded as the leader and the 

beneficiaries as followers. The objectives of the leader 

were to minimize the total opening cost for distribution 

centers and total uncovered demand, and the followers’ 

objective was to provide user equilibrium related to the 

leader. Xu, Wang, Zhang and Tu [25] proposed a multi-

objective bi-level programming for the location-routing 

problem in the post-earthquake phase. The leader 

(Rescue Control Center) decided on the location of 

distribution centers, and the follower (Logistics 

Company) selected an optimal route to collect relief 

supplies from distribution centers. Road conditions were 

considered a source of uncertainty in this optimization 

model. Safaei, Farsad and Paydar [26] utilized a bi-level 

programming model to locate distribution centers and 

select suppliers. The leader’s objective function was to 

minimize operational costs and uncoated demands, and 

the lower-level aimed to minimize the risk of the 

supplier’s choice. 
 
 

3. PROBLEM DESCRIPTION  
 

In this paper, the disaster emergency network was 

assumed to comprise three stages (see, Figure 1). The 

first stage includes a set of national warehouses, the 

second contains regional warehouses, and the last is 

comprised of demand cities. Regional warehouses 

receive their relief supplies from national warehouses. 

Demand cities are serviced only from regional 

warehouses, and the direct shipment of goods from 

national warehouses to demand cities is prohibited.  

 

 

 
Figure 1. Bi-Level Emergency Warehouse Location-Allocation Problem (BL-EW-LAP) 

 

 

 
Figure 2. Framework of model for bi-level location-allocation problem 
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According to Figure 2. the problem has a bi-level 

structure for which the national top-level decision-maker 

is regarded as the leader and regional decision-maker as 

the follower. The aim of both decision-makers is to locate 

warehouses that completely cover all demands. The 

leader makes the decision on the location of national 

warehouses, and their assignment to regional 

warehouses. The case holds the same for the follower 

deciding on the location of regional warehouses and their 

assignment to demand cities. The following assumptions 

are considered for modeling: 

 This model considers a single relief item 

 The capacity of each emergency warehouse at both 

levels is based on the proportion of demand covered 

by candidate cities. 

 Each demand city cannot be served by more than one 

regional warehouse. 

 Each regional warehouse cannot be served by more 

than one national warehouse. 

 The total capacity of all located regional warehouses 

must be more than the total weight of demand cities. 

 The total capacity of all located national warehouses 

must be greater than the capacity of all regional 

warehouses. 

There is no shipping between the same warehouses in 

each stage. 

 

Indices 

𝐼    set of candidate cities for national warehouses  

𝐽    set of candidate cities for regional warehouses  

𝐾   set of demand cities 

Parameters: 

𝑢𝑟𝑑𝑖𝑗    Road distance of national warehouse 𝑖                             

from regional warehouse 𝑗 

𝑙𝑟𝑑𝑗𝑘   Road distance of regional warehouse 𝑗 from 

demand cities 𝑘 

𝑙𝑑𝑤𝑘    Demand weight associated to demand cities 𝑘 

𝑢𝑐𝑎𝑝𝑖     Capacity of national warehouse 𝑖    
𝑙𝑐𝑎𝑝𝑗     Capacity of regional warehouse 𝑗   

𝑢𝑚𝑎𝑥  Number of national warehouses to establish 

𝑙𝑚𝑎𝑥   Number of regional warehouses to establish  

Decision variable: 

𝑍𝑖 = 1     if a national warehouse is established at 

candidate city 𝑖, and 0 otherwise. 

𝑋𝑖𝑗 = 1    if regional warehouse 𝑗 is allocated to  national 

warehouse 𝑖, and 0 otherwise. 

𝑍̅𝑗 = 1      if a regional warehouse is established at 

candidate city 𝑗, and 0 otherwise. 

𝑌𝑗𝑘 = 1    if demand point 𝑘 is allocated to regional 

warehouse 𝑗 and 0 otherwise. 

𝑢𝑑𝑤𝑗     Demand weight associated to each regional 

warehouse 𝑗  

  (𝑢𝑑𝑤𝑗 = ∑ 𝑙𝑑𝑤𝑘 ∗ 𝑌𝑗𝑘
𝑘
𝑘=1 )   

 

BL-EW-LAP Model: 

Upper-level model (ULM) 

𝑚𝑖𝑛         ∑ ∑ 𝑢𝑑𝑤𝑗𝑢𝑟𝑑𝑖𝑗𝑋𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1   (2) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   ∑ 𝑍𝑖
𝑛
𝑖=1 = 𝑢𝑚𝑎𝑥    (3) 

∑ 𝑋𝑖𝑗
𝑛
𝑖=1 = 1            ∀𝑗    (4) 

∑ 𝑢𝑑𝑤𝑗𝑋𝑖𝑗
𝑚
𝑗=1 ≤ 𝑢𝑐𝑎𝑝𝑖𝑍𝑖        ∀𝑖    (5) 

∑ 𝑙𝑑𝑤𝑘𝑌𝑗𝑘
𝑘
𝑘=1 = ∑ 𝑢𝑑𝑤𝑗𝑋𝑖𝑗

𝑛
𝑖=1     ∀𝑗  (6) 

𝑍𝑖 , 𝑋𝑖𝑗 ∈ {0,1} (7) 

 

Lower-level model (LLM) 

𝑀𝑖𝑛   ∑ ∑ 𝑙𝑑𝑤𝑘𝑙𝑟𝑑𝑗𝑘𝑌𝑗𝑘
𝑘
𝑘=1

𝑚
𝑗=1        (8) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   ∑ 𝑍̅𝑗
𝑚
𝑗=1 = 𝑙𝑚𝑎𝑥 (9) 

∑ 𝑌𝑗𝑘
𝑚
𝑗=1 = 1     ∀𝑘      (10) 

∑ 𝑙𝑑𝑤𝑘𝑌𝑗𝑘
𝑘
𝑘=1 ≤ 𝑙𝑐𝑎𝑝𝑖𝑍̅𝑗       ∀𝑗  (11) 

∑ 𝑙𝑑𝑤𝑘𝑌𝑗𝑘
𝑘
𝑘=1 = (∑ 𝑢𝑑𝑤𝑗𝑋𝑖𝑗

𝑛
𝑖=1 )𝑍̅𝑗       ∀𝑗  (12) 

𝑍̅𝑗  , 𝑌𝑗𝑘 ∈ {0,1} (13) 

Equations (2)-(7) refer to the upper-level model 

(ULM), whereas Equations (8)-(13) represent the lower-

level model (LLM). Equations (7) and (13) set binary 

conditions for the decision variables of both levels. The 

objective function of the upper-level is to minimize the 

total weighed distance between national and regional 

warehouses. Equation (3) ensures that the maximum 

number of national warehouses that can be established on 

the candidate sites is equal to (𝑢𝑚𝑎𝑥). From equation 

(4), it is guaranteed that each regional warehouse 𝑗 is 

likely to be allocated to national warehouse 𝑖. Equation 

(5) is to ensure that the regional warehouse allocated to 

the national warehouse will not exceed the capacity. 

Equation (6) is a balance constraint for each regional 

warehouse. In other words, the amount of demand 

weights of cities allocated to a regional warehouse should 

be equal to the value allocated from the national 

warehouse. Similar to that of the upper-level, the 

objective function of the lower-level model minimizes 

the total weighed distance between regional warehouses 

and demand cities (Equation (8)). The interpretation of 

Equations (9)-(12) is similar to that of Equations (3)-(6). 

In fact, in Equation (12), 𝑢𝑑𝑤𝑗  is equal to ∑ 𝑙𝑑𝑤𝑘 ∗𝑘 𝑌𝑗𝑘; 

therefore, 𝑢𝑑𝑤𝑗  becomes a decision variable. 

Consequently, the equation will be non-linear. To 

linearize Equation (12), we utilize  𝐴𝑗𝑘 as an auxiliary 

variable and introduce the following sub-situations:  

∑ 𝑙𝑑𝑤𝑘𝑌𝑗𝑘
𝑘
𝑘=1 = ∑ ∑ 𝑙𝑑𝑤𝑘𝐴𝑗𝑘𝑋𝑖𝑗

𝑘
𝑘=1

𝑛
𝑖=1     ∀𝑗   (14) 

𝐴𝑗𝑘 ≤ 𝑌𝑗𝑘     ∀𝑗, 𝑘  (15) 
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𝐴𝑗𝑘 ≤ 𝑍̅𝑗      ∀𝑗, 𝑘  (16) 

𝐴𝑗𝑘 ≥ 𝑌𝑗𝑘 + 𝑍̅𝑗 − 1    ∀𝑗, 𝑘  (17) 

𝐴𝑗𝑘 ∈ {0,1}  (18) 

 

 

4. SOLUTION ALGORITHMS 
 

Several approaches have been proposed to classify 

algorithms for bi-level optimization problems that  can be 

generally divided into two groups; classical and 

evolutionary approaches [31]. For bi-level programming 

to be a strong NP-hard problem [32], utilization of 

evolutionary algorithms for this type of problems is well-

suited. Applications of evolutionary algorithms for bi-

level programming can be divided into four groups: i) 

Single level transformation, ii) Nested, iii) Multi-

objective, iv) Co-evolutionary [33]. Genetic algorithm is 

one of the most effective evolutionary algorithms 

frequently used for bi-level optimization problems. In 

[34-37], the genetic algorithm is utilized in the nested 

evolutionary sequential approach. Different types of 

evolutionary algorithms have also been used to solve 

facility location bi-level programming models. Huang 

and Liu [38] developed an interactive evolutionary 

framework for mixed integer bi-level programming in the 

location-allocation problem. They employed genetic 

algorithm for the lower-level model and enumeration 

vertex method for the upper-level model. Chen, 

Tadikamalla, Shang and Song [29] developed an 

improved differential evolution algorithm (IDE) to solve 

a binary bi-level model for the emergency warehouse 

location-allocation problem. The computational results 

of IDE were compared with the results of conventional 

differential evolution algorithms.  
As Table 2 shows, there have been three approaches 

developed to tackle the BL-EW-LAP. The first approach, 

named Full Enumeration and Exact Algorithm (FE-EA), 

is based on explicit complete enumeration methods. The 

general structure of the second and third approaches is 

based on the Nested Evolutionary Approach (NEA). 

These approaches have been named Nested Genetic and 

Exact Solution (NG-ES) and Nested Heuristic Local 

Search and Exact Solution (NHLS-ES), for which the 

genetic algorithm and the heuristic local search algorithm 

have been proposed to solve ULM. In both approaches, 

the LLM has been solved by the exact algorithm. In this 
 

 

TABLE 2.The solution approaches for BL-EW-LAP 

Lower-level 

solution 

Upper-level 

solution 

Type of 

approach 

Name of 

Algorithm 

Exact 

algorithm 

Exact 

algorithm 

Full 

enumeration 
FE-EA 

Exact 

algorithm 

Genetic 

algorithm 

Nested  

evolutionary 
NG-ES 

Exact 
algorithm 

Heuristic 
local search 

nested  
evolutionary 

NHLS-ES 

study, GAMS was used with branch-bound algorithm as 

an exact algorithm in the proposed approaches. 
 

4. 1. Full Enumeration and Exact Algorithm (FE-
EA)               According to Figure 3, in the first step, the 

FE-EA algorithm identifies all the allocation modes of 

national warehouses to regional warehouses (𝑋𝑖𝑗). In the 

second and third steps, (𝑋𝑖𝑗) are sent to the LLM and the 

optimal solutions of the LLM (𝑍̅𝑗
∗
, 𝑌𝑗𝑘

∗) are calculated by 

the exact algorithm. In steps 4 and 5, (𝑌𝑗𝑘
∗) as a parameter 

are sent to the ULM and the optimal solutions of the 

ULM (𝑍𝑖
∗, 𝑋𝑖𝑗

∗) are calculated for all cases through the 

exact algorithm. Finally, the best solution of the ULM is 

determined to be the optimal solution for the bi-level 

problem. 
 

4. 2. NEA for the BL-EW-LAP Model               In this 

approach, in the first step, an initial solution 

(𝑍𝑖, 𝑋𝑖𝑗 , 𝑍̅𝑗, 𝑌𝑗𝑘) is generated for the bi-level model. In the 

next step, 𝑋𝑖𝑗 is sent as a parameter for LLM. In the 

sequel, through the exact algorithm, optimal solutions of 

the LLM (𝑍̅𝑗
∗, 𝑌𝑗𝑘

∗ ) are calculated. In the next step, the 

values (𝑍̅𝑗
∗, 𝑌𝑗𝑘

∗ ) are transferred to ULM and replaced with 

the previous solutions. Then, the evaluation phase is 

performed. In this framework, the genetic algorithm and 

the heuristic local search algorithm are proposed 

separately. In the initial solution phase, (𝑍𝑖 , 𝑍̅𝑗) are 

generated randomly, and (𝑋𝑖𝑗 , 𝑌𝑗𝑘) are calculated through 

the two heuristic allocation algorithms (Demand 

algorithm or Average distance algorithm), presented in 

[39]. In both heuristic allocation algorithms, assignment 

of facilities is based on the nearest distances. The 

difference between heuristic methods is the sorting 

criteria of nodes and their priority determination in the 

assignment. In the demand algorithm (DE), regional 

warehouses and demand cities with higher demand 

weights (𝑢𝑑𝑤𝑗 , 𝑙𝑑𝑤𝑘) are of higher priorities. In Average 

distance algorithm (AD), regional warehouses with the 

highest average distance to national warehouses and 

demand cities with the highest average distance to the 

regional warehouses are of higher priorities. Since 

allocation processes at upper and lower levels are 

performed through two allocation methods, in the NEA 

framework, four algorithms can be separately used to 

solve the model for each approach.  
 

4. 3. Nested Genetic-Exact Solution (NG-ES)           
Generally, this algorithm consists of two phases; the 

initial solution generation and the evaluation phase. 

 

 
Figure 3. Pseudo-code of FE-EA algorithm 
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Figure 13 presents the Pseudo code of  NG-ES. In the 

initial solution phase, an initial population (𝑃𝑂𝑃0) is 

generated. As Figure 4 shows, the structure of the 

chromosome is composed of two parts, the first one 

assigned to locating the national warehouse and the 

second dedicated to locating the regional warehouse. The 

length of the array for both parts is equal to the maximum 

number of warehouses, which can be placed at national 

and regional levels(𝑢𝑚𝑎𝑥, 𝑙𝑚𝑎𝑥). A solution is made by 

unique integers between 1 and 𝑚 for part 1 and unique 

integers between 1 and 𝑛 for part 2. In this phase, demand 

cities are allocated to regional warehouses, and (𝑌𝑗𝑘) is 

calculated by one of the heuristic allocation algorithms. 

In the next step, the weight associated to each regional 

warehouse (𝑢𝑑𝑤𝑗) is calculated using equation 

(∑ 𝑙𝑑𝑤𝑌𝑗𝑘)𝑘 . Again, through the heuristic allocation 

algorithm, regional warehouses are allocated to the 

national warehouse, and (𝑋𝑖𝑗) is calculated. Next, (𝑋𝑖𝑗) 

is sent to LLM as the parameter. In the next step, LLM is 

solved using the exact algorithm.  Afterward, the optimal 

solution of LLM (𝑌𝑗𝑘
∗ ) is sent for ULM. 

Regarding (𝑌𝑗𝑘
∗ ), (𝑋𝑖𝑗) is modified and replaced with the 

previous solution. 
In the evaluation phase of the algorithm, crossover 

and mutation operators were applied to the existing 

solutions. A two-point crossover operator was designed 

according to Figure 4. In the crossover operation, one of 

the two parts of the chromosome is randomly selected 

with the same chance (probability of selection = 0.5), and 

the two-point crossover operator is applied to that part. If 

each chromosome part contains a duplicate index 

indicating an infeasible solution, it will be modified as 

observed in Figure 5. Similar to the crossover operator, 

the mutation operation selects one part of the 

chromosome randomly with the same chance. Afterward, 

one cell is randomly selected and replaced with an index 

not existing in the parent. Therefore, the mutation 

operator produces an offspring from one parent 

chromosome. 
 

 

 
Figure 4. Two-point crossover operator 

 
Figure 5. Mutation operator 

 

 

4. 4. Nested Heuristic Local Search-Exact Solution 
(NHLS-ES)                 The general structure of NHLS-ES 

is similar to that of NG-ES. Figure 12 presents the Pseudo 

code of the NHLS-ES algorithm. The initial solution 

generation is the same as the NG-ES algorithm. The 

evaluation phase uses the mutation operator to generate a 

neighborhood solution. Mutation operator selects one 

part of the chromosome randomly. The probability of the 

selection for the first and second parts of the chromosome 

is calculated based on formulas (19) and (20), 

respectively. Figure shows the neighbor search operator. 

 max max maxfirst u u lp   (19) 

 sec max max maxond l u lp   (20) 

The mutation operator is sequentially three-point, 

two-point, and one-point. In each iteration of the 

mutation process, if it is better than the best solution, the 

objective value of a new solution is considered the best 

solution. At each stage of mutation, the Sub-Iter is 

specified as the number of internal repetitions. If in that 

number of repetitions, the objective value is not 

improved, the type of mutation is changed from three-

point to two-point and eventually from two-point to one-

point. Generally, unless the best answer improves the 

number of iterations (𝑀𝑎𝑥𝐶𝑜𝑛), the algorithm stops. 

 

 

5. RESULTS    
5. 1. Case Study                  The model parameters were 

adjusted based on the Iran case study. Nine large cities 

and all centers of provinces in Iran (31 provinces) were 

selected as national and regional warehouses candidates, 

respectively. Furthermore, 118 cities with more than 

150000 people were considered demand cities. 

According to formula (21), (𝑢𝑑𝑤𝑘) is calculated based 

on the earthquake risk (𝐸𝑅) and the population of the city 

(𝑃𝑂). Population statistic was extracted from the 
 

 

 
Figure 6. Neighbor search operator 
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Statistical Center of Iran website based on the Population 

and Housing Census (2016). The Iranian Code of 

Practice for Seismic Resistant Resign of Building, 

Standard No.2800 was used to calculate the earthquake 

risk of the cities (𝐸𝑅).  

k k kudw ER PO   (21) 

In this paper, to calculate the distances matrix 

between nodes (𝑢𝑟𝑑𝑖𝑗 , 𝑙𝑟𝑑𝑗𝑘), road distance was 

obtained from the Google Maps Platform and Distance 

Matrix API service. A code was written in Python 

programming language to determine the distance matrix 

of nodes (𝑢𝑟𝑑𝑖𝑗 , 𝑙𝑟𝑑𝑗𝑘).  
 

5. 2. Computational Results              The small size 

problem was solved by FE-EA, and the optimal location 

and allocation were reported. When the lower-level 

problem was solved to optimality, the performance 

assessment of the bi-level problem was conducted using 

the upper-level objective [33]. Table 3 reports the 

numerical results obtained by NG-ES and NLS-ES 

algorithms for the upper-level. As Table 3 show, two 

algorithms from NG-ES and one from NLS-ES were 

obtained as the optimal solution. 
Owing to the inefficiency of FE-EA in large-size 

problems, it is only solved by NHLS-S and NG-ES. 

Tables 4 and 5 report the best and the average values for 

all algorithms. The minimum value of the leader’s 

objective function is related to NG-ES with the DE-AD 

code.  This algorithm uses the DE and AD algorithm to 

allocate facilities at upper and lower levels, respectively. 

As Figures 7 and 8 show, based on the best and average 

value, NG-ES (DE-AD) outperforms other algorithms 

and is selected as the appropriate algorithm for BL-EW-

LAP. According to Figure 9, all types of NG-ES 

algorithm have better performance than NHLS-ES for 

standard deviation. In addition, NHLS-ES is converged 

much faster than NG-ES is (Figure 10). Since BL-EW-

LAP is a strategic and long-term problem, CPU time is 

not considered the important criterion to select an 

appropriate algorithm.  

Figure 11 illustrates the behavior of the objective 

functions and the effect of the leader’s response on the 

follower for different solutions. The leader is 

monotonically decreasing, while the follower has some 

fluctuation. Table 6 depicts the effect of parameters 

(𝑢𝑚𝑎𝑥, 𝑙𝑚𝑎𝑥) change on the value of the objective  

function. With the increasing number of national 

warehouses, the objective function of both levels is 
 

 

TABLE 3. Results of all algorithm for the upper-level in the 

small size problem 

NHLS-ES NG-ES Algorithm code 

912589320.2 912589320.2 DE-DE 

946221123 912589320.2 DE-AD 

946221123 946221123 AD-DE 

946221123 1101597134 AD-AD 

reduced, but the increase in the number of regional 

warehouses does not affect the objective function of the 

leader and follower models. 

 

 

 
Figure 7. Best solution (NG-ES,NHLS-ES) 

 

 

 
Figure 8. Average of solutions (NG-ES,NHLS-ES) 

 

 

 
Figure 9. Standard deviation of solutions (NG-ES,NHLS-

ES) 

 

 

 
Figure 10. CPU time of Algorithms (NG-ES,NHLS-ES) 
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TABLE 4. Results of NHLS-ES algorithm for the large size problem 

Algorithm code Average of leader solutions Best solution Leader Best solution follower Standard deviation CPU time 

DE-DE 1929385300 1356849145 19240511260 708256048.8 797.2 

DE-AD 2062886677 1548416948 12505727872 529921735 943.8 

AD-DE 2287684536 1610141001 16760613398 920550513 736.8 

AD-AD 2810441087 2293225935 15642906833 602752285.6 560.3 

 

 

TABLE 5. Results of NG-ES algorithm for the large size problem  

Algorithm code Average of leader solutions Best solution Leader Best solution follower Standard deviation CPU time 

DE-DE 2161814222 1186002289 15220205195 377314775 2448 

DE-AD 1665766868 2135123991 12515807758 449096980 2821 

AD-DE 1904908088 1610141001 13067224449 330637134 4015 

AD-AD 2033692902 1725735466 16780294548 329650646 3307 

 

 

 
Figure 11. The variations of objective functions 

 

 
TABLE 6. Impact of change (𝑢𝑚𝑎𝑥, 𝑙𝑚𝑎𝑥) on objective 

functions 

𝒖𝒎𝒂𝒙 𝒍𝒎𝒂𝒙 
Leader objective 

function  

Follower objective 

function  

2 3 912589320.2 2913096362 

2 4 912589320.2 2913096362 

2 5 912589320.2 2913096362 

3 4 768888241.7 2709942156 

3 5 768888241.7 2709942156 

 
 

6. CONCLUSION   
 

In this paper, a new bi-level programming model was 

designed for location-allocation emergency warehouses 

in the pre-positioning relief supply problem. In this 

model, the leader makes a decision on the location and 

allocation of national warehouses by predicting the 

location of regional warehouses and allocating them to 

demand cities. The application of this type of modeling 

suits countries where the design of the relief network is 

decentralized. The contribution of our problem in the pre-

positioning literature is to model the location-allocation 

emergency warehouses problem in the framework of bi-

level optimization. This model can also be used in the 

decentralized business supply chain. One requirement of 

logistic planning in disaster management is a limitation 

in the dispatch time of relief items from national 

warehouses to regional warehouses and the regional 

warehouse to service demand points. Accordingly, as a 

future suggestion, some constraints can be considered on 

the response time or coverage radius for national and 

regional warehouses. This helps the optimization model 

to become more realistic. Furthermore, there is more than 

one decision-maker at national and regional levels, 

leading to the design of multi-leader and multi-follower 

bi-level models. This kind of problem has more 

complexity than single leader/follower bi-level 

programming, especially for discrete problems. Another 

modeling suggestions is to consider various objective 

functions for upper-level and lower-level models. 

Furthermore, this problem can be modeled in the context 

of critical facility location. 

Based on the comparison of NG-ES and NHLS-ES, it 

can be concluded that the developed algorithms compute 

the solution of the acceptable accuracy with a reasonable 

amount of time for a real problem. The NG-ES approach 

exhibited better results in this paper in terms of the 

standard deviation of solutions. The genetic algorithm 

exploits the well observed solutions, and it increases the 

intensification of the algorithm. NG-ES (DE-AD) 

outperformed all the sub-groups of NG-ES and NHLS-

ES with the best, average and standard deviation of 

solutions for models with many variables.  The main 

reasons behind the superiority of NG-ES (DE-AD) over 

three other nested genetic algorithms are concerned with 

the allocation method. The solution generation of all 

modes of NG-ES and NHLS-ES is a bottom-up approach 

(lower-level model to upper-level model), meaning that 

to calculate (𝑋𝑖𝑗), (𝑌𝑗𝑘) must be calculated first. In certain 

cases, the generation of good solutions for the follower 
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may exclude the generation of good solutions for the 

leader. This mechanism reduced the exploration of the 

search space (diversification), influencing its 

performance considerably. The development of nested 

evolutionary with different initial solution mechanisms 

and an exact method to solve these large size problems 

precisely can be a suggestion for further research. 
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8. Appendix: Pseudo Code of Solution Algorithms 
 
1: Input  

2: Let  𝑆𝑢𝑏 − 𝑖𝑡𝑒𝑟  be internal loop iteration  

3: Let  𝐿𝑚𝑎𝑥  be number of local search method  

4: Let  𝐶𝑂𝑁 be a counter that initially set to 0 

5: Let  𝑀𝑎𝑥𝐶𝑂𝑁  be the maximum number of trials that the 
algorithm is not improved improve the solution*/ 

6: Generate an initial solution/*integer string* / 

7: For all chromosomes 

8: Calculate Yjk by the allocation heuristic algorithm 

9: Calculate  𝑢𝑑𝑤𝑗 = ∑ 𝑙𝑑𝑤𝑗𝑌𝑗𝑘𝑘    

10: Calculate  𝑋𝑖𝑗 by the allocation heuristic algorithm 

11: Let 𝑋𝑖𝑗 be as a parameters into the LLM     

12: Calculate, 

*

jkY
 by an exact algorithm 

13: Let 

*

jkY
 be as a parameters into the ULM 

14: Update udwj and calculate 𝑋𝑖𝑗  by the allocation heuristic 

algorithm based on chromosome 

15: L=1 

16: Best Solution = Current Solution  

17: While 𝑪𝒐𝒏 < 𝑴𝒂𝒙𝑪𝒐𝒏                            

18: iter =1 

19: Repeat 

20: Create new neighborhood by mutation method 

21: Calculate new neighborhood objective function 

22: If  𝐹𝑁𝑒𝑤 ≤ 𝐹𝐵𝑒𝑠𝑡 
23: Current solution = new neighborhood 
24: Iter=iter+1 

25: Until (iter ≤ Sub-iter ) 
26: If current solution < Best Solution 

27: Best Solution = current solution 
28: L=L 

29: Con=0 

30: Else 
31: L=L+1 

32: If L>Imax 

33: L=1 

34: Con=Con+1 

35: End 

36: Output best solution found 

Figure 12. Pseudo-code of NHLS-ES 
 

1. Input  

2. Let cp
  be the percentage of Crossovers population 

3. Let mp
 be the percentage of Mutation population 

4. Let 
npop  be the size of population  

5. Let  
spr

be the percentage of Selection pressure rate  

6. Let  𝐶𝑂𝑁 be a counter that initially set to 0 

7. Let  𝑀𝑎𝑥𝐶𝑂𝑁 the maximum number of trials that the 

algorithm is not improved  
8. Selection method of parent        /*Roulette wheel selection*/  

      Initial Solution generation  

9. Generate an initial population of chromosomes ( 0
pop

)   
/*integer string*/ 

10. For all chromosomes 

11. Calculate Yjk by the allocation heuristic algorithm 

12. Calculate  𝑢𝑑𝑤𝑗 = ∑ 𝑙𝑑𝑤𝑗𝑌𝑗𝑘𝑘  

13. Calculate  𝑋𝑖𝑗 by the allocation heuristic algorithm 

14. Let 𝑋𝑖𝑗 be as a parameters into the LLM     

15. Calculate 𝑌𝑗𝑘
∗

 
by an exact algorithm 

16. Let Yjk be as a parameters into the ULM 

17. Update udwj and calculate  𝑋𝑖𝑗 by the allocation heuristic 

algorithm  

        Evaluation phase: 

18. While 𝐶𝑂𝑁 <  𝑀𝑎𝑥𝐶𝑂𝑁                               

19. cn
 = 

*
c

npop p
   / * number of chromosomes that will be 

generated by crossover*/ 

20. 𝑖 = 1; 

21. While    𝑖 ≤ 𝑛𝑐/2 
22. Select two chromosomes as parents based on Roulette wheel 

selection 
23. Generate two offspring chromosomes by crossover operator  

24. 𝑛𝑚 = 𝑛𝑝𝑜𝑝 ∗ 𝑝𝑚;   / * number of chromosome that will be 
mutated*/ 

25. 𝑗 = 1; 

26. While  𝑗 ≤ 𝑛𝑚 
27. Select a random chromosome  

28. Mutate chromosome  
29.   For each new chromosome 

30. Repeat 10 to 17 steps 

31. Calculate 𝑂𝐹𝑈𝐿𝑀 of each new chromosome 

32. Merge and sort population  

Update stop condition    

33.  If the best solution not improve  

34.   𝐶𝑂𝑁 = 𝐶𝑂𝑁 + 1 
35.  Else  

36.   𝐶𝑂𝑁 = 0 
37. End 

38. Output best solution  

Figure 13. Pseudo-code of NG-ES 
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Persian Abstract 

 چکیده
خود تخصیص دهند که این موضوع باعث اختلال در نظام تصمیم گیری دولت مرکزی می در برخ کشورها مدیران منطقه ای تلاش می کنند تسهیلات ملی را به نفع مناطق 

اشد و استفاده از برخوردار نمی ب شود. با توجه به ساختار سلسله مراتبی این نوع تصمیم گیری ها، استفاده از مدلهای بهینه سازی کلاسیک از کارایی مناسبی در تصمیم گیری

 طحی می تواند باعث افزایش اثربخشی برنامه ها شود. مقاله ما با هدف بکارگیری رویکرد برنامه ریزی دوسطحی در مساله مکانیابی انبارهایرویکردهای بهینه سازی چند س

دل در نظر گرفته شده است. مسانی اضطراری بحران انجام شده است. یک زنجیره تامین امدادی سه لایه ای شامل انبارهای ملی، منطقه ای و نقاط تقاضا به عنوان شبکه امداد ر

آنها به نقاط  نطقه ای و تخصیصسطح بالا در خصوص مکان یابی انبارهای ملی و تخصیص آنها به انبارهای منطقه ای تصمیم گیری میکند. مدل سطح پایین نیز مکان انبارهای م

یم شده است. سه روش براساس رویکرد حل براساس شمارش کامل و دو الگوریتم تخصیص میانه تنظ-تقاضا را مشخص میکند. ساختار هر دو مدل براساس مساله مکان یابی

ه است. نتایج مساله تحلیل شد تکاملی تودرتو ) الگوریتم ژنتیک و جستجو همسایگی( ارائه شده است. مدل در ایران استفاده شده است و اثربخشی الگوریتمها برای دو سایز

 ویکردهای حل می باشد.بدست آمده نشان دهنده عملکرد مناسب ر

 
 


