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This paper is an attempt to model the oxidation behavior of Ni-base alloys by considering the alloying
elements, i.e., Cr, W, Mo, as variables. Modified particle swarm optimization-artificial neural network
(MPSO-ANN) and gene expression programming (GEP) techniques were employed for modeling.
Data set for construction of (MPSO-ANN) and GEP models selected from 66 cyclic oxidation
performed in the temperature range of 400-1150 °C for 27 different Ni-based alloy samples at various
amounts of Cr, W, and Mo. The weight percent of alloying elements selected as input variables and the
changes of weight during the oxidation cycle considered as output. To analyze the performance of
proposed models, various statistical indices, viz. root mean squared error (RMSE) and the correlation
coefficient between two data sets (R?) were utilized. The collected data of GEP randomly divided into
21 training sets and 6 testing sets. The results confirmed that the possibility of oxidation behavior
modeling using GEP by R? = 0.981, RMSE =0.0822. By consideration of oxidation resistance as
criteria, Cr, Mo, and W enhanced the oxidation resistance of Ni-based alloys. The results showed that
in the presence of Cr as alloying element, especially at Cr contents higher than 22 wt.%, the effect of
W and Mo were negligible. However, the same trend was reversed at the sample with Cr content lower
than 20 wt.%. In these cases, the effect of W and Mo on oxidation resistance were significantly
enhanced.

doi: 10.5829/ije.2020.33.11b.23

1. INTRODUCTION

layer for protection against environmental agent [3-6].
Haynes alloy 230 is one of the most convenient Ni-
based alloys with the surface layer of Cr,0Os3 based scale

Ni-based alloys have extensive usages as high-
temperature alloys due to relatively high resistance for
the oxidation, e.g., structural materials for construction
of the steam generator tubes and high-energy piping
nozzles [1, 2]. Growing demand for new technologies
enhanced the queries for advanced material with
innovative properties, especially, high oxidation
resistance, mechanical strength, and fabric ability. By
consideration of these properties, alloys divided into the
type with surface layer of Cr,Oz based scale for the
oxidation behavior, and the type with Al,Os-based scale
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types. On the one hand, excellent high-temperature
strength and on the other hand, acceptable
environmental resistance has caused the evolution of
Haynes 230 as a good candidate for application in high
temperature components in aerospace as well as power
industries [1]. According to literature, there would be
endless queries for high-temperature structural alloys in
the future, especially in power plants HR-120, HR-160
and Haynes 230 alloys are the most commercial
chromium—forming alloys. The cycle oxidation
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resistance of these alloys is strongly dependent on the
amount of alloying elements [7]. Specific characteristics
of Haynes 230 alloys encourage the researchers to select
as prime candidates for high-temperature usages.
Accordingly, many studies have been designed for
investigating the oxide scale formation as a function of
operational temperature at different environmental
conditions. For example, the presence of minor alloying
elements in Hayens 230 significantly enhanced the
oxidation resistance of alloys [4]. However, in some
cases, some trend has been observed in binary alloys
system at the presence of third alloying elements [4].
Investigating the literature revealed that the high-
temperature resistance under thermal cycling condition
of Cr,0; —forming alloys is strongly affected by the
amount of Si content [8]. Investigating the influence of
Cr, W, and Mo on the oxidation resistance of Ni — Cr —
W — Mo alloys is the main objective of this study. W
and Mo constituents can enhance the high-temperature
strength of high temperature alloys through solid
solution hardening. While the oxidation resistance of Fe
and Ni-base alloys are affected by W and Mo in various
mechanisms. Typically, the presence of a higher
contents of refractory metals, e.g., Mo, W, Ta, Re, is
necessary for higher creep strength of Ni-based alloys
[5, 9].

In their research, Yun et al. [1] proposed that
accumulation of metallic Mo at the interface of oxide —
metal and Mo® in Fe -24 wt.%. Cr -11 wt%. Mo-alloy
has a high potential for the oxidation at 700 K and
consequently enhanced the oxidation resistance. Similar
observations have been reported about the positive
effect of Cr and Al content in Ni-Co —Cr —Al -W —Mo —
Ta —Re —Ru during the oxidation at 1100 °C and to the
formation of a protective layer as NiAl,O4 [9]. In other
researches, it has been shown that W and Mo cause
volatile species as oxide phase to form and prevent the
formation of fresh protective Cr,Os; layer after the
spallation of oxide scale, and consequently there is not
any linear relation between the amount of alloying
elements and the oxidation behavior in the multi-
component system [1]. Advances in computer hardware
have made soft computing techniques more efficient. In
addition, soft computing techniques may be used to
model problems where the conventional approaches,
such as regression analysis, fail or perform poorly [10].
Artificial neural networks, fuzzy logic, adaptive neuro-
fuzzy interfacial, and GP are the most common soft
computing techniques [11]. Use of Al techniques such
as artificial neural networks (ANN) and gene expression
programming (GEP) are popular in various fields of
mathematics, engineering, medicine, economics,
meteorology, and psychology are attracting interest in
recent years [12]. ANN method provides a novel
approach to predict the deformation behavior of
materials under different conditions. ANN is an

artificial intelligence technology to simulate biological
processes of the human brain [13, 14]. This system
comprises operators interconnected via one-way signal
flow channels. It collects the samples with a distributed
coding which forms a trainable non-linear system. It is
also self-adaptive to the environment to respond to the
different inputs rationally [15]. Although ANNs
typically build “‘black box’’ models, explicit formulas
can be derived for a trained ANN model. A derivative-
free optimization algorithm should be added to the
training process of the ANN algorithm to avoid local
minima, which leads to false convergence of the ANN
model [10]. There are many papers on the applications
of GEP in the literature for different engineering
problems [11]. GEP is newer than the GP approach. GA
by employment of genetic variation and operators
selects the best individuals [12]. A combination of
regression strategies and systematic design of the
experiment is an efficient alternative approach for
providing the experimental data in a new popularity
model approach such as Gene expression programming.
ANN and GEP can capture complex interactions among
input/ output variables in a system without using prior
knowledge about the nature of these interactions. To the
best of our knowledge, there are some reports about the
usage of two different Al applications: ANN and GEP
together to compare prediction performance and explain
experimental procedures [10, 11, 16-18].

This paper aims to evaluate the oxidation behavior
of Ni-base alloys using PSO- ANN and GEP models
[17]. In the current study, GEP (an advanced approach
in artificial intelligent and modified PSO-artificial
neural network strategy) has been utilized to construct a
new model for the prediction and optimization of the
oxidation resistance of Ni-Cr—W-Mo alloys as a
function of main alloying element (i.e., Cr, W, Mo)
using the reported data in the literature [1] as input. The
samples produced by a combination of nominal
composition in vacuum arc remelting furnace. XRD
(X’pert MPD system of Philips instrument by Cu-K,)
and FESEM (MIRA3 model) were employed for phase
analysis and morphological investigation, respectively.
The motivation of this paper is to illustrate an
appropriate model for the prediction of oxidation
resistance of Ni-Cr—-W-Mo alloys by artificial
intelligence models as a function of the type and amount
of alloying elements, (Cr, W, Mo) as well as
determining the relative significance of input variable in
output.

2. COLLECTION OF EXPERIMENTAL DATA

Determination of effective practical parameters as input
has a key role in accurate modeling of specific output.
Dae Won Yun et al. [1] have investigated the high-
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temperature behavior of Ni-Cr—W-Mo alloys using
Bayesian neural network. They used 66 experiments of
oxidation cyclic on 27 samples of Ni—-Cr—W-Mo alloys
with various alloying elements. According to their
experiments the oxidation cyclic behavior is mainly a
function of alloying elements. Hence, various alloying
content of Cr (18, 22, 26 wt.%), W (10, 14, 18 wt.%)
and Mo (0, 2, 4 wt.%) were selected for the preparation
of 27 different samples of Ni-base alloys. The alloying
element content are selected as input and the weight
changes after 66 cycles (mg/cm?) are considered as
output. Table 1 shows the chemical composition and
corresponding weight changes for every sample [1].

TABLE 1. The details of experimental data for constructing
of the GEP and modified PSO- ANN models [1]

Input Output

,:alllr?])és cr W Mo Weight changes
Weo)  ess)  wo)  er S eS

TO1 18 10 0 -218.77
TO2 18 10 2 -136.69
T03 18 10 4 -146.65
TO4 18 14 0 -182.14
T05 18 14 2 -149.80
TO6 18 14 4 -124.40
TO7 18 18 0 -156.25
T08 18 18 2 -126.72
T09 18 18 4 -81.98
T10 22 10 0 -37.03
T11 22 10 2 -31.52
T12 22 10 4 -25.63
T13 22 14 0 -43.50
T14 22 14 2 -26.99
Ti5 22 14 4 -21.44
T16 22 18 0 -50.09
T17 22 18 2 -32.85
Ti8 22 18 4 -17.24
T19 26 10 0 -2.10
T20 26 10 2 -4.73
T21 26 10 4 -4.97
T22 26 14 0 -6.06
T23 26 14 2 -4.90
T24 26 14 4 -4.76
T25 26 18 0 -9.80
T26 26 18 2 -7.01
T27 26 18 4 -3.90

As shown in Figure 1(a), the effective formation of
Ni-based alloying was confirmed in the typically XRD
pattern of T13 sample. Minor segregation of W and Cr
are the other events shown in Figure 1(b). the EDX
point chemical analysis Figure 1(c) confirmed the
presence of alloying elements in point A.

2. 1. Artificial Neural Network (ANN) ANN is
a biologically inspired system developed to solve
problems in the same way that the human brain would.
Generally, the architecture of ANN consists of three
different layers as follows i.e., input layer, hidden layer
and output layer [19-23]. Back propagation is one of the
most common methods for training ANN. The weight
vector of network is also important since it is
contributing to the better performance [24-26]. The
meta-heuristic techniques have been getting attention to
improve the parameters of ANN. Therefore, we apply
PSO algorithm to optimize ANN’S weights [14, 27].

2. 2. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is one of the most

popular population-based stochastic  optimization
(@)
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Figure 1. Typically illustration of (a) XRD pattern and (b)
FESEM image and (c) EDX point chemical analysis of point
A of as-cast T13 prepared alloy
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algorithms [28]. PSO technique has received wide
attention in recent years since it can converge to the
optimization value quickly and has excellent robustness
[29, 30]. The aim of the current study is to determine
the most appropriate values for the weights and
bias of NN (i.e., optimized NN) based on the PSO
algorithm [31]. Then, we used optimized NN as the
Fitness function of PSO to obtain the best values, of our
futures.

2. 3. GEP Methodology GEP is an advanced
evolutionary approach with the ability to model the high
complexity problems by the employment of a linear
representation of a practical process with nonlinear
behavior [32]. GEP provides a simple genetic operator,
similar to the genetic algorithm, for the illustration of
complex and expressive trees similar to the genetic
programming [33, 34]. GEP, at first, dedicating a
constant length of a chromosome to the initial
population that is randomly generated [35]. At second
step, the fitness of individuals of chromosomes is
estimated and at the third step, by considering the higher
fitness as criterion, the most appropriate individuals are
selected to enhance the model accuracy. These stages
are repeated until pre-defined generations number or
until an appropriate model has been determined. Figure
2 illustrates the flowchart of Gene expression
programming [36].

The input and output parameters for GEP modeling
are the content of alloys elements, including Cr, Mo, W,
and the weight changes after 66 cycles (mg/cm?),
respectively. To construct the GEP models, 21 set of
experiments were employed for training and the
remaining 6 sets were utilized for testing of the
proposed models. GEP starts by random selection of 21
data set for training and 6 data set for testing the
performance of proposed models. To model the
oxidation behavior of Ni-base alloys, in the current
study, GEP modeling was performed at the following
steps:

1. Evaluation of the fitness of generated chromosomes
by consideration of root relative squared error (RRSE)
as fitness function;

2. Selection of the terminals and functions to construct
the GEP chromosomes;

3. Determination of chromosomes architecture, i.e., a
function of head size and gene number;

4. Definition of genetic operators and their related rates;
5. Finding of appropriate function for connecting the
genes, i.e., “division”, “multiplication”, “subtraction”,
and “addition” in GEP software [37].

Hence, GEP modeling is a time-consuming and
complicated process [37]. By utilization of trial and
error during the changing of GEP characteristics (as
shown in Table 2) and monitoring the accuracy criteria
until the acceptable models were obtained [38].

Randomly create chromosomes
of initial population

Express chromosome as cxpression | Create new
tree(s) chromosome

Exccute expression tree(s) and Crossover
cevaluate their fitnesses and mutation
w Selection of

best tree(s)

Figure 2. Providing the GEP flowchart [10]

TABLE 2. The characteristics of the training parameters of
GEP models

GEP parameters definition Choice

+ - % /1, In(x), X2, ¥x,

Tanh(x) , Sech(x), Exp(x), atan(x),
Max(x,y), Min(x,y), Not, Avg2,

Function set

pow
Number of chromosomes 30
Head size 7,8 (GEP-10,GEP-11,GEP-12)
Number of genes 3

Linking function Addition, multiplication

Fitness function error type RRSE
Constant per gene 1

0.00138, 0 (GEP-2, GEP-3, GEP-4,
GEP-6, GEP-7, GEP-10, GEP-11)

0(GEP-2, GEP-3, GEP-4, GEP-11),
0.00546 (GEP-1, GEP-5, GEP-8,
GEP-9, GEP-12), 0.0082 (GEP-6,
GEP-7, GEP-10)

0(GEP-2, GEP-3, GEP-4, GEP-11),
0.00277 (GEP-1, GEP-5, GEP-8,
GEP-9, GEP-12). 0.0028 (GEP-6,
GEP-7, GEP-10)

0(GEP-2, GEP-3, GEP-4, GEP-11).
0.00277 (GEP-1, GEP-5, GEP-8,
GEP-9, GEP-12). 0.0028 (GEP-6,
GEP-7, GEP-10)

Mutation rate

Inversion rate

One point recombination rate

Two point recombination rate

3. RESULTS AND DISCUSSIONS

Since GEP and MPSO-ANN are able to model specific
output as a function of independent variables, the
dependency of input variables must be checked at first.
It was necessary to note that the presence of any
dependency between input parameters, i.e., Cr (wt.%),
W (wt.%), and Mo (wt.%) can evolve the problem and



H. Hasibi et al. / IJE TRANSACTIONS B: Applications Vol. 33, No. 11, (November 2020) 2327-2338 2331

exaggerate the strength of each input variable. This
study used bivariate correlation analysis to determine
the relationship between the practical parameters. Table
3 shows various correlation coefficients between
practical parameters [39, 40]. As shown, there is not any
interaction between the input parameters, and
consequently, the collected experimental data set are
appropriate for modeling by GEP and PSO-ANN.

3. 1. MPSO-ANN Model Results The evolution
of 10 most appropriate MPSO-ANN models has been
carried out by employment of two statistical indices,
viz. root mean square error (RMSE) and the correlation
coefficient between two data sets (R?). It was necessary
to note that the network with values of error indices
closer to zero and value of R? closer to one shows better
performance. Equations (1) and (2) show these indices.

RSME = /% n (hp —h,)? @)

B (h-hp)?

2 —
R7=1 Zinzl(h_h—a)z (2)

in which, ha hp, h s and n are the experimental (target)
value (actual weight changes after 66 cycles (mg/cm?)),
the predicted value of weight changes, the average of
the actual value of weight changes during the two-run of
measurements and the number of experimental samples,
respectively.

Table 4 compares the 10 most appropriate MPSO-
ANN models for the prediction of the oxidation
resistance of Ni-based alloys in detail. As shown,
various functions and neuron numbers caused the
changes in the number of statistical indices. In addition,
logsig and tansig are employed as activation functions
during the optimization process.

Figure 3 compares the statistical indices for
validation of proposed MPSO-ANN performances. In
the case of RMSE (Figure 3(b)), the lower values of
error belong to model 5 and consequently, this model
shows higher performance with respect to the other.
This situation belongs to model 9 for the case of R? as a
threshold, because of its closer values to 1 (Figure 3(a)).
If Fitness value, defined as the amount of both types of
indices (error and R?), the behavior of the proposed
model as a function of network number can be
monitored as shown in Figure 4. Accordingly, by

TABLE 3. Dearson’s correlation coefficients among all pairs
of input variables

TABLE 4. Details of trained MPSO-ANN models

Model Neurons Function R? RMSE
PSO-ANN 1 8-7-1 logsig-purelin 0.8532 0.0086
PSO-ANN 2 8-4-1 tansig-purelin 0.9118 0.0003
PSO-ANN 3 8-8-1 tansig-purelin 0.8636 0.0005
PSO-ANN 4 8-3-1 logsig-purelin 0.7795 0.0008

PSO-ANN 5 8-14-1 logsig-purelin 0.8635 0.0002

PSO-ANN 6 8-12-1 tansig-purelin 0.8141 0.0048

PSO-ANN 7 8-17-1 logsig-purelin 0.8607 0.0006
PSO-ANN 8 8-28-1 logsig-purelin 0.8607 0.0006
PSO-ANN 9 8-25-1 tansig-purelin 0.9337 0.0014

PSO-ANN 10 8-16-1 logsig-purelin 0.9006 0.0030

Parameters Cr (wt.%) W (wt.%) Mo (wt.%)
Cr (Wt.%) 1 0 0
W (Wt.%) 0 1 0
Mo (wt.%) 0 0 1

0.94 | (a) .
0.92 | .
L 09
S o088
Z 0.86 . . . L
or 0.84 |
0.82 .
0.8 |
0.78 .
1 2 3 4 5 6 7 8 9 10
PSO-ANN Model
0.01
0,009 - (b)
0.008
ﬁ 0.007
= 0.006
&2 0.005 .
0.004
0.003 *
0,002 .
0,001 « o o o

1 2 3 4 5 6 7 8 9 1
PSO-ANN Model
Figure 3. The statistical quality criteria of PSO-ANN
networks (a) R?, (b) RMSE

Fitness value

1.05

1 2 3 4 5 6 7 8 9 10
PSO-ANN Model

Figure 4. Fitness values of different ANN-PSO networks

consideration of both types of indices, including R? and
RMSE, model 9 proposed as the most appropriate
models in this study. Because of the best performance
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was achieved when fitness value was closer to zero.
Fitness value was proposed as Equation (3):

Fitness value = RMSE — — 3)
R2

In Figure 5, normalized data of weight loss as a function
of various alloying elements have been reported and
confirmed the acceptable performance of MPSO-ANN
network. In addition, the accuracy of MPSO- ANN 9
network is higher for the estimation of the effect of Cr,
W, and Mo.

3. 2. GEP Model Results In current work, GEP,
i.e., an advanced methodology in Al has been utilized to
model the oxidation behavior of Ni-based alloys in the
presence of Cr, W, and Mo as alloying elements. Hence,
12 different GEP models were proposed after evaluation
of 100 models constructed with various GEP parameters
including chromosome number, head size, gene number,
linking function and function set [12].
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_: 14 + Predicted data
=
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‘S 08%

z
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Figure 5. Predicted weight loss based on alloying elements
Cr(a), W(b) and Mo(c) by hybrid ANN and MPSO algorithm

It was necessary to note that due to the possibility of
various combination in GEP parameters, construction of
GEP model for all these combinations need a huge
amount of computational time. Table 5 indicates the
training and test evaluation of GEP model after 66
oxidation cycles. In a similar approach for validation of
PSO-ANN networks, the statistical indicator including
root mean square error (RMSE) and an absolute fraction
of variance (R?) are utilized for validation of the
accuracy GEP models [41]. As shown in Table 4, R?
values changed in the range of 0.938-0.991 for the
training step and 0.931-981 for the testing step. The
minimum amount of RMSE is equal to 0.0572 in testing
and 0.0279 for the training step, respectively. By
consideration of the higher value of R? (close to 1) and
lower value of RMSE (close to zero) as criteria, GEP-
12, GEP-11, GEP-8 and GEP-9 were selected from 100
GEP investigated models. Figure 5 compares the
changes of statistical indicators in training and testing of
most appropriate GEP models. Analysis of Figure 6
reveals that GEP-11 shows higher accuracy with respect
to the other GEP models in prediction of high-
temperature oxidation behavior of Ni-Cr-W-Mo alloys.

Table 6 Summary of the most appropriate 12 GEP
models.

Figure 7 shows the comparison of R? and MSE for
GEP-8, GEP-9, GEP-11 and GEP-12 models in testing
and training phases. In these Figures, the sample
numbers shown in circles and hexagons, while the
numbers in vertical axis belong to the weight changes
after 66 cyclic oxidation tests. As can be seen, R? and
RMSE training and testing of GEP-11 model confirmed
the higher accuracy of GEP-11 respect to the other

TABLE 5. Statistics indicator values for the validation of
proposed GEP models

R? RMSE Best Fitness

Model
Train Test Train Test Train Test

GEP-1 0.9380 09382 0.0770 0.0713 7995 795.20
GEP-2 09706 0.9465 0.0529 0.0977 853.03 739.19
GEP-3 0.9903 0.9662 0.0302 0.0875 910.46 759.77
GEP-4 0.9445 09759 0.0731 0.0914 804.81 751.84
GEP-5 0.9913 0.9553 0.0290 0.1019 913,55 730.96
GEP-6 0.9738 0.9485 0.0528 0.0979 8356 738.78
GEP-7 0.9867 09314 0.0354 0.0782 896.52 779.84
GEP-8 0.9824 0.9700 0.0412 0.0596 881.75 882.87
GEP-9 0.9887 0.9715 0.0325 0.0572 904.15 828.74
GEP-10 09823 0.9559 0.0408 0.0686 882.74 801.48
GEP-11 ~ 0.9919 0.9812 0.0279 0.0822 771.01 916.53
GEP-12  0.9637 0.9774 0.0604 0.063 835.62 813.66
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Figure 6. Different errors for training and testing data series in
GEP models; (a) R%and (b) RMSE

models (Figures 7 (e¢) and 7 (f)). Accordingly, the
empirical weight changes, after 66 cycles of oxidation
of Ni-Cr-W-Mo alloys are in good agreement with the
predicted weight variation with GEP-11.

Boxplot is a popular approach for the visual
representation of data sets through their quartiles.
Whisker, i.e., parallel lines extending from the boxes, is
utilized to show the variability region at the upper and
lower quartiles. Outliers are often shown as separate
dots in the line with whiskers. Taking less space as well
as its ability for comparing the distribution of any data
set is the main advantage of boxplot [42]. Boxplot
provides the possibility of determination of the outliers
the symmetricity of data, the amount of data set tightly,
direction, and amount of skewed diagrams as a visual
representation.

To find the best model for the explanation of the
oxidation behavior of Ni-Cr-W-Mo alloys, boxplot is
utilized in this study. Accordingly, the residual error,
defined as the difference between the predicted and
experimental values, is plotted for various GEP models.
Figure 8 compares the boxplot of the training and
testing phase for various GEP models [42].

In boxplot, the rectangle displays the distance
between the first and third quarters and the line within
the rectangle determines the second quarter. The black
lines outside the rectangle show the minimum and

maximum data values. Moreover, the outliers are
illustrated in boxplot. As shown in Figure 8, GEP-11
and GEP-8 have shown the lowest amount of residual
error. However, GEP-8 model illustrates higher outliers
and caused a severe reduction of its performance.
Moreover, exception the GEP-8 and GEP-12, the data
tend toward the higher values and their distribution
skewed to the top [42]. In Figure 8 b, all GEP models
show at least one outlier data exceptional the GEP-12
with to outliers. In addition, GEP-8 and GEP-11 have
lower values of residual errors.

TABLE 6. Summary of most appropriate GEP models in the
prediction of the oxidation resistance

Model Inferring equation

y = min((GEP3Rt((Cr*Mo)) +GEP3Rt((W+0.492))), Mo) +
((((1.0-Cr) *(-0.640)) *(1.0-Cr)) * ((Cr+(0.640)) 12)) +
((((1.0-Mo) -(-5.298+Mo))+(((-
5.298+Cr)+max(Cr,M0))/2.0))/2.0)

y = ((((1.0-Mo) -(-7.388+Mo)) +max(((Cr+Cr)/2.0),
((Mo+W)/2.0)))/2.0) + ((((1.0-Cr) *(-0.659)) * (1.0+0.659))
*((Cr-0.659) ~2)) + min (((((1.35) -(Cr-0.675))
+GEP3R1(0.675))/2.0), Mo)

y = ((min(((Cr+Cr) +((W+Mo)/2.0)), max (0,931, Mo))
GEP-3 +Cr)/2.0) +(L.0/((1.196*(((Cr+Cr) +1.196) +exp(1.196))))) +
(((((0.281*W)*Mo)A2)+((Cr-0.281)-(Cr*2)))/2.0)

y = min((((((Cr+Mo)/2.0)"2)+tanh((0.142-M0)))/2.0),Mo) +
GEP-4  (((min((Cr-0.216),(M0*0.216))+(W*0.216))/2.0)+0.216) +
(min((Cr+Mo),0,759)+((M0*0.759)-((Mo+Mo)/2.0)))

y = tanh(((GEP3R((((-1.940+2.486)/2.0)+(Cr*W)))*2)"2)) *
GEP-5 ~ GEP3Rt(tanh((((((W+M0)/2.0)"2)"2)+Cr))) * (((1.0-
Mo)+(Cr+Mo)-(((Cr™2)+((W+Cr)/2.0))/2.0))

y = (((9.143+(Cr+9.143))/2.0)*((9.143-M0)-(Cr"2))) +
GEP-6 ((Min(Cr,0.139)-(0.278))+((W*0.139)*(Cr"2))) +
((((Cr+W)+(Cr+Mo))+((1.0-W)*(Cr+0.45)))/2.0)

y = atan((exp(-0.707)*GEP3Rt(((Cr+Mo)/2.0)))) +
GEP-7 atan(atan(atan(GEP3Rt(max((W*1.495),Cr))))) +
((GEP3Rt(Mo)-tanh(Mo))*(max(0.804)-(1.0-0.402)))

y = ((sech(Cr)*(Cr+Cr))-max(max(0.113,Cr),(0.113*Cr))) +
(atan((max(Cr,W)-(-0.612)))*

((0.374)-(Mo*Cr))) +
((min(Mo,Cr)+(0.321))*max((Cr*Cr),atan(Mo)))

y= atan((atan((-0.757*Cr))+((tanh(Cr)+atan(Cr))/2.0))) +
GEP-9 atan(atan((((atan(Mo)+((0.110+W)/2.0))/2.0)+(Cr+Cr)))) +
max((((-0.418+Cr)-W)*(1.0-Cr)),atan((0)))

y = GEP3Rt(tanh((((0.840-Mo)-exp(Cr))*exp(exp(Cr))))) *
GEP-10 ((tanh((max(W,Cr)+(Mo+Cr)))+GEP3Rt(Cr))/2.0)* min((-
1.004),GEP3Rt(((Cr-0.502)-tanh(Mo))))

y = max((1.0-(1.0-
tanh(Cr))),(((min(W,W)+(0.127*M0))/2.0)"2)) +
(((GEP3Rt(GEP3Rt(Cr))+(M0*0.237))/2.0)/((0.474)+(Cr+Cr)
)+(((((-0.347*Cr)+(-0.347)) +tanh((Cr"2)))/2.0)*(-0.347))

y = (((((1.0-Cr)-Mo)+(-0.427 *W))/2.0)*((((W+Cr)/2.0)+(Cr-
0.427))/2.0))+ (tanh(Cr)-min((Cr-(Cr+W)),(-0.869)))+
((1.0/(reallog(((0.472)/2.0))))+(((tanh(Cr)-
Cr)+((Mo+Cr)/2.0))/2.0))

GEP-1

GEP-2

GEP-8

GEP-11

GEP-12
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Figure 7. Comparison of R2 and MSE for testing and training
phases of the most appropriate model prepared by GEP; (a, b):
training and testing of GEP-8; (c, d): training and testing of
GEP-9; (e, f): training and testing of GEP-11; (g, h): training
and testing related to GEP-12

Since, the aim of this study is to illustrate a model
with the highest performances, the boxplot of 27
samples has been prepared by the most appropriate GEP
models (Figure 9). Accordingly, in spite of the presence
of an outlier in GEP-12, due to the wide distribution of
residual error, this model was rejected. The other GEP
models (GEP-8 and GEP-9) showed at least two outlier
data, while GEP-11 has symmetrical distribution as well
as one outlier data. Accordingly, GEP-11 has been
proposed as the most appropriate model for prediction
of the oxidation behavior of Ni-Cr-Mo-W alloys at high
temperatures.

3. 3. Sensitivity Analysis Since, the proposed
PSO- ANN network and GEP model have acceptable
performance for the prediction of oxidation behavior,
the sensitivity analysis was performed on both of them
and the results were compared.

0.15 . (ﬂ)
0.1 * 17
E 0.08
= I T
jom oo ]
3 T
& o8 18 l 1 i
A1 ol r
.15 ) ) ‘ )
GEP-§ GEP-9 GEP-11 GEP-12
0.20 A (b)
0.154 .1 1 1

0.10

Residual error

0.05 ﬂ m
0~ [ \:f +
.05 o
GEP-§ GEP-9 GEP-11 GEP-12

Figure 8. The values of residual error for GEP models in the
form of boxplots for the (a) training and (b) testing datasets

3. 3. 1. Sensitivity Analysis using PSO- ANN
Network In this approach, the sensitivity
analysis was performed by changing the values of each
parameter in the range of lower and higher levels of
practical values when the other parameters remained
constant in their average values. In addition, to provide
the possibility of illustration of all affected parameters
with various values and their distribution, all inputs
were standardized by definition of z- square [35].
h;_h

20 @
where, hi, h, ¢ and Z are the i variable, the average,
standard deviation of input parameters, and the
standardized value of parameter, respectively. The
display of weight changes versus the changes of any
input parameters are shown in Figure 10. As shown, the
change in the input parameter (Mo) versus the output
parameter (weight changes after 66 cycles) is very small
and it is as a straight line. Therefore, the weight percent
of Mo has the least effect on the weight changes
(oxidation resistance) while Cr and W have the most
effect on oxidation resistance, respectively.
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Figure 9. The values of residual error for GEP models in the
form of box plots for all of 27 Ni-Cr—W-Mo alloys
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Figure 10. Sensitivity analysis of input parameters on the

weight changes after 66 cycles [35]

3. 3. 2. Sensitivity Analysis using GEP Similar
approach was used to determine the sensitivity analysis
in current study. In this regard, various noises were
created on the input data at 5 and 10 % and compared
the amount of output error by actual values.

Figure 11 shows the sensitivity analysis to determine
the relative significance of Cr content on the oxidation
resistance of Ni-Cr-W-Mo alloys investigated in this
study. According to this figure, the oxidation resistance
of Ni-based alloys is proportional to their Cr content.
Also, the positive effect of Cr amount on the oxidation
resistance is more severe at higher Cr content, i.e.,
(T19-T27) alloys with 26 wt.% of Cr. However, the
positive effect of Cr content in other samples with 22
and 18 wt.% of Cr is lower proportional to the amount
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Figure 11. Sensitivity analysis for determination of the effect
of Cr on the oxidation resistance of Ni-Cr—W-Mo alloys. (a)
Increasing the Cr content, (b) Decreasing Cr content

of Cr in (T1, T2, T3, T4, T5, T6, T7, T8, T9), (T10,
T11, T12, T13, T14, Ti5, T16, T17, T18) alloys.
Moreover, the presence of Mo and W in the alloys with
22 wt.% and 26 wt.% of Cr decreased the positive effect
of Cr in oxidation resistance. In this trend, W shows
lower effect compared to Mo.

Figure 11 (b) reveals that the effect of reducing the
Cr content on decreasing the oxidation resistance is
higher in the sample with 26 wt.% of Cr with respect to
the other. Also, the presence of Mo and W in alloys
with 18 wt.% Cr compensates for the negative effect of
lower Cr on the cyclic oxidation behavior. In this
regard, Mo is more effective than the W.

The results of the sensitivity analysis on the effect of
W content is shown in Figure 12. As shown in Figure 12
(a), similar to the effect of Cr, generally the addition of
W amount enhances the oxidation resistance and this
positive effect of W is more serious in alloys with the
lower content of Cr. Also, by decreasing W content
(Figure 12 (b)), oxidation resistance of low Cr content
(18 wt.%) is decreased and this trend is intensified in
the presence of Mo.

Analysis of Figure 13 (b) shows that similar trends
to Cr and W have evolved in the presence of Mo on the
oxidation resistance of Ni-Cr-Mo-W alloys. This effect
is higher in low Cr content (18 wt.%) alloys. Moreover,
decreasing Mo content decreased the oxidation
resistance and this trend is more intensified in low Cr
content alloys.
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Figure 12. Sensitivity analysis for determination of the effect

of W on the oxidation resistance of Ni-Cr—-W-Mo alloys. (a)
Increasing the W content, (b) Decreasing W content
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In conclusion, Cr, Mo and W enhanced the oxidation
resistance of Ni-Cr-Mo-W alloys. However, in higher
Cr containing alloys (alloys with 22 and 26 wt.% of Cr),
the Cr content is administrated parameters on the
oxidation behavior. The presence of Mo and W induced
a positive effect on the oxidation behavior of 18 wt.%
Cr. While this effect is reversed in high Cr content
alloys (26 and 22 wt.% Cr).

In summary, the higher Cr contents facilitate the
formation of adhesive Cr-rich oxide protective layer and
induce higher temperature resistance. Typically in the
alloys containing 26 wt.% Cr, the continuity and
adhesivity of surface Cr,Os; layer disturbed in the
presence of other alloying elements including W and
Mo. It seems that these elements disturb the protective
Cr,03 surface films through the evaporation of W and
Mo oxides [43]. While, in the case of alloys with Cr
content lower than 22 wt.%, the effect of W and Mo
were reversed. In this condition, such alloying oxides
can provide robust surface protectivity of the oxide
layer at high temperatures [44].

In Figure 14, the weight changes from experimental
studies are compared with the predicted values using
GEP- 11 and the MPSO-ANN 9 models. As can be
seen, the values predicted by GEP- 11 model are more
accurate than the MPSO model and are closer to real
values and this means that the presented GEP model has
achieved success in simulation of the high-temperature
oxidation behavior of the Ni-based alloys.
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Figure 14. The comparison between the experimental weight
changes (after 66 cycles) and the predicted weight changes by
GEP and MPSO-ANN models

4. CONCLUSIONS

The prediction resistance of Ni-Cr-Mo-W alloys has a
key role in the improvement and desig of new high-
temperature resistance materials. MPSO-ANN and GEP
are increasingly being seen as a novel evolutionary
algorithm, which enhanced many advantages of
previously constructed models. Based on the results of
the current study in which MPSO- ANN and GEP are
utilized to model the oxidation behaviors of Ni-Cr-Mo-
W alloys, confirmed that the GEP models have the
higher performance for modeling of high-temperature
resistance behavior. Accordingly, the GEP model and
MPSO-ANN model with R? and RMSE values equal to
0.9919, 0.0279, 0.9337, and 0.0014, respectively
proposed as appropriate models for prediction of the
oxidation behavior of Ni-Cr-Mo-W alloys. Moreover,
the sensitivity analysis revealed that at higher Cr content
(i.e., 22 and 26 wt.%), Cr was administrated alloying
elements on the high-temperature resistance, while, in
the lower Cr content (i.e., 18 wt.%), the presence of Mo
(with the higher effect), and W (with the lower effect)
can compensate the lower content of Cr content.
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